Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.4905
Cited By
v1
v2 (latest)
Variational Gaussian Process State-Space Models
18 June 2014
R. Frigola
Yutian Chen
C. Rasmussen
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Gaussian Process State-Space Models"
37 / 87 papers shown
Title
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
53
34
0
01 Jul 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
30
0
13 Jun 2019
A General
O
(
n
2
)
\mathcal{O}(n^2)
O
(
n
2
)
Hyper-Parameter Optimization for Gaussian Process Regression with Cross-Validation and Non-linearly Constrained ADMM
Linning Xu
Feng Yin
Jiawei Zhang
Zhi-Quan Luo
Shuguang Cui
GP
62
0
0
06 Jun 2019
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Daniel L. Marino
Milos Manic
23
3
0
05 Jun 2019
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
280
21
0
04 Jun 2019
Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker
G. Bohner
Julien Boussard
M. Sahani
62
77
0
12 Feb 2019
Modeling neural dynamics during speech production using a state space variational autoencoder
Pengfei Sun
David A. Moses
E. Chang
BDL
13
3
0
13 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
64
2
0
03 Jan 2019
Evaluating the squared-exponential covariance function in Gaussian processes with integral observations
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
63
9
0
18 Dec 2018
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
74
6
0
14 Dec 2018
Closed-form Inference and Prediction in Gaussian Process State-Space Models
Alessandro Davide Ialongo
Mark van der Wilk
C. Rasmussen
77
8
0
10 Dec 2018
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
114
73
0
29 Nov 2018
Mean Square Prediction Error of Misspecified Gaussian Process Models
Thomas Beckers
Jonas Umlauft
Sandra Hirche
60
19
0
16 Nov 2018
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
Young-Jin Park
Han-Lim Choi
16
0
0
19 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
43
4
0
01 Jul 2018
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
100
9
0
25 Jun 2018
Learning unknown ODE models with Gaussian processes
Markus Heinonen
Çağatay Yıldız
Henrik Mannerstrom
Jukka Intosalmi
Harri Lähdesmäki
55
94
0
12 Mar 2018
Specialized Interior Point Algorithm for Stable Nonlinear System Identification
Jack Umenberger
I. Manchester
46
33
0
02 Mar 2018
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
64
1
0
25 Feb 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
74
32
0
13 Feb 2018
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
89
123
0
31 Jan 2018
Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation
Roman Föll
B. Haasdonk
Markus Hanselmann
Holger Ulmer
BDL
60
6
0
02 Nov 2017
Variational online learning of neural dynamics
Yuan Zhao
Il Memming Park
BDL
OffRL
79
9
0
27 Jul 2017
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
90
113
0
30 May 2017
A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings
Sami Remes
Markus Heinonen
Samuel Kaski
91
3
0
27 Feb 2017
Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering
Hao Liu
Yang Yang
Fumin Shen
Lixin Duan
Heng Tao Shen
65
9
0
15 Dec 2016
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
100
105
0
27 Oct 2016
Incremental Nonlinear System Identification and Adaptive Particle Filtering Using Gaussian Process
Vahid Bastani
L. Marcenaro
C. Regazzoni
15
0
0
30 Aug 2016
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
84
155
0
26 May 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
89
25
0
23 May 2016
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
Yuan Zhao
Il-Su Park
105
117
0
11 Apr 2016
A flexible state space model for learning nonlinear dynamical systems
Andreas Svensson
Thomas B. Schon
82
104
0
17 Mar 2016
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
129
41
0
29 Jan 2016
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
96
75
0
20 Nov 2015
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
92
147
0
10 Jun 2015
Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
Andreas Svensson
Arno Solin
Simo Särkkä
Thomas B. Schon
81
57
0
07 Jun 2015
Previous
1
2