ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.4905
  4. Cited By
Variational Gaussian Process State-Space Models
v1v2 (latest)

Variational Gaussian Process State-Space Models

18 June 2014
R. Frigola
Yutian Chen
C. Rasmussen
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Gaussian Process State-Space Models"

37 / 87 papers shown
Title
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
53
34
0
01 Jul 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
30
0
13 Jun 2019
A General $\mathcal{O}(n^2)$ Hyper-Parameter Optimization for Gaussian
  Process Regression with Cross-Validation and Non-linearly Constrained ADMM
A General O(n2)\mathcal{O}(n^2)O(n2) Hyper-Parameter Optimization for Gaussian Process Regression with Cross-Validation and Non-linearly Constrained ADMM
Linning Xu
Feng Yin
Jiawei Zhang
Zhi-Quan Luo
Shuguang Cui
GP
62
0
0
06 Jun 2019
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Daniel L. Marino
Milos Manic
23
3
0
05 Jun 2019
Streaming Variational Monte Carlo
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
280
21
0
04 Jun 2019
Learning interpretable continuous-time models of latent stochastic
  dynamical systems
Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker
G. Bohner
Julien Boussard
M. Sahani
62
77
0
12 Feb 2019
Modeling neural dynamics during speech production using a state space
  variational autoencoder
Modeling neural dynamics during speech production using a state space variational autoencoder
Pengfei Sun
David A. Moses
E. Chang
BDL
13
3
0
13 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
64
2
0
03 Jan 2019
Evaluating the squared-exponential covariance function in Gaussian
  processes with integral observations
Evaluating the squared-exponential covariance function in Gaussian processes with integral observations
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
63
9
0
18 Dec 2018
Non-Factorised Variational Inference in Dynamical Systems
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
74
6
0
14 Dec 2018
Closed-form Inference and Prediction in Gaussian Process State-Space
  Models
Closed-form Inference and Prediction in Gaussian Process State-Space Models
Alessandro Davide Ialongo
Mark van der Wilk
C. Rasmussen
77
8
0
10 Dec 2018
Tree-Structured Recurrent Switching Linear Dynamical Systems for
  Multi-Scale Modeling
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
114
73
0
29 Nov 2018
Mean Square Prediction Error of Misspecified Gaussian Process Models
Mean Square Prediction Error of Misspecified Gaussian Process Models
Thomas Beckers
Jonas Umlauft
Sandra Hirche
60
19
0
16 Nov 2018
InfoSSM: Interpretable Unsupervised Learning of Nonparametric
  State-Space Model for Multi-modal Dynamics
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
Young-Jin Park
Han-Lim Choi
16
0
0
19 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for
  Compute Clusters
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
43
4
0
01 Jul 2018
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
100
9
0
25 Jun 2018
Learning unknown ODE models with Gaussian processes
Learning unknown ODE models with Gaussian processes
Markus Heinonen
Çağatay Yıldız
Henrik Mannerstrom
Jukka Intosalmi
Harri Lähdesmäki
55
94
0
12 Mar 2018
Specialized Interior Point Algorithm for Stable Nonlinear System
  Identification
Specialized Interior Point Algorithm for Stable Nonlinear System Identification
Jack Umenberger
I. Manchester
46
33
0
02 Mar 2018
Conditionally Independent Multiresolution Gaussian Processes
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
64
1
0
25 Feb 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
74
32
0
13 Feb 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
89
123
0
31 Jan 2018
Deep Recurrent Gaussian Process with Variational Sparse Spectrum
  Approximation
Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation
Roman Föll
B. Haasdonk
Markus Hanselmann
Holger Ulmer
BDL
60
6
0
02 Nov 2017
Variational online learning of neural dynamics
Variational online learning of neural dynamics
Yuan Zhao
Il Memming Park
BDLOffRL
79
9
0
27 Jul 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
90
113
0
30 May 2017
A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable
  Couplings
A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings
Sami Remes
Markus Heinonen
Samuel Kaski
91
3
0
27 Feb 2017
Recurrent Image Captioner: Describing Images with Spatial-Invariant
  Transformation and Attention Filtering
Recurrent Image Captioner: Describing Images with Spatial-Invariant Transformation and Attention Filtering
Hao Liu
Yang Yang
Fumin Shen
Lixin Duan
Heng Tao Shen
65
9
0
15 Dec 2016
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
100
105
0
27 Oct 2016
Incremental Nonlinear System Identification and Adaptive Particle
  Filtering Using Gaussian Process
Incremental Nonlinear System Identification and Adaptive Particle Filtering Using Gaussian Process
Vahid Bastani
L. Marcenaro
C. Regazzoni
15
0
0
30 Aug 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
84
155
0
26 May 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
89
25
0
23 May 2016
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics
  from Population Spike Trains
Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
Yuan Zhao
Il-Su Park
105
117
0
11 Apr 2016
A flexible state space model for learning nonlinear dynamical systems
A flexible state space model for learning nonlinear dynamical systems
Andreas Svensson
Thomas B. Schon
82
104
0
17 Mar 2016
System Identification through Online Sparse Gaussian Process Regression
  with Input Noise
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
129
41
0
29 Jan 2016
Recurrent Gaussian Processes
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
96
75
0
20 Nov 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
92
147
0
10 Jun 2015
Computationally Efficient Bayesian Learning of Gaussian Process State
  Space Models
Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
Andreas Svensson
Arno Solin
Simo Särkkä
Thomas B. Schon
81
57
0
07 Jun 2015
Previous
12