ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.2710
  4. Cited By
Finito: A Faster, Permutable Incremental Gradient Method for Big Data
  Problems

Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems

10 July 2014
Aaron Defazio
T. Caetano
Justin Domke
ArXivPDFHTML

Papers citing "Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems"

39 / 39 papers shown
Title
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
44
1
0
09 Nov 2023
SPIRAL: A superlinearly convergent incremental proximal algorithm for
  nonconvex finite sum minimization
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
34
2
0
17 Jul 2022
Federated Random Reshuffling with Compression and Variance Reduction
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
29
10
0
08 May 2022
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
45
2
0
20 Aug 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
Federated Stochastic Gradient Langevin Dynamics
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
37
24
0
23 Apr 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
39
78
0
19 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
40
17
0
11 Feb 2020
A Hybrid Stochastic Optimization Framework for Stochastic Composite
  Nonconvex Optimization
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
A Unifying Framework for Variance Reduction Algorithms for Finding
  Zeroes of Monotone Operators
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
25
3
0
22 Jun 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic
  Gradient Methods
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
Estimate Sequences for Stochastic Composite Optimization: Variance
  Reduction, Acceleration, and Robustness to Noise
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
34
44
0
25 Jan 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are
  Better Without the Outer Loop
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
36
155
0
24 Jan 2019
On the Ineffectiveness of Variance Reduced Optimization for Deep
  Learning
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
On the Acceleration of L-BFGS with Second-Order Information and
  Stochastic Batches
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
Jie Liu
Yu Rong
Martin Takáč
Junzhou Huang
ODL
38
7
0
14 Jul 2018
A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm
A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm
Konstantin Mishchenko
F. Iutzeler
J. Malick
19
22
0
25 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
19
174
0
14 Jun 2018
Analysis of Biased Stochastic Gradient Descent Using Sequential
  Semidefinite Programs
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
24
39
0
03 Nov 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
31
13
0
04 Aug 2017
A Unified Analysis of Stochastic Optimization Methods Using Jump System
  Theory and Quadratic Constraints
A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints
Bin Hu
Peter M. Seiler
Anders Rantzer
30
35
0
25 Jun 2017
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton
  Method
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
Aryan Mokhtari
Alejandro Ribeiro
35
16
0
22 May 2017
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
11
94
0
20 May 2017
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with
  Linear Convergence Rate
Surpassing Gradient Descent Provably: A Cyclic Incremental Method with Linear Convergence Rate
Aryan Mokhtari
Mert Gurbuzbalaban
Alejandro Ribeiro
37
36
0
01 Nov 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets
  with Finite-Sum Structure
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
47
36
0
04 Oct 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic
  Quasi-Newton Acceleration
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
33
13
0
04 Oct 2016
Trading-off variance and complexity in stochastic gradient descent
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
25
13
0
22 Mar 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
35
577
0
18 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
32
390
0
17 Mar 2016
A Simple Practical Accelerated Method for Finite Sums
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
30
121
0
08 Feb 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
20
27
0
05 Feb 2016
New Optimisation Methods for Machine Learning
New Optimisation Methods for Machine Learning
Aaron Defazio
46
6
0
09 Oct 2015
On Variance Reduction in Stochastic Gradient Descent and its
  Asynchronous Variants
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
40
194
0
23 Jun 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
31
195
0
05 Jun 2015
SDCA without Duality
SDCA without Duality
Shai Shalev-Shwartz
27
47
0
22 Feb 2015
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
114
1,244
0
10 Sep 2013
1