Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1408.2049
Cited By
v1
v2 (latest)
Optimally-Weighted Herding is Bayesian Quadrature
Conference on Uncertainty in Artificial Intelligence (UAI), 2012
9 August 2014
Ferenc Huszár
David Duvenaud
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimally-Weighted Herding is Bayesian Quadrature"
50 / 54 papers shown
Title
Stationary MMD Points for Cubature
Zonghao Chen
Toni Karvonen
Heishiro Kanagawa
F. Briol
Chris J. Oates
240
0
0
27 May 2025
Solving the Cold Start Problem on One's Own as an End User via Preference Transfer
Ryoma Sato
213
0
0
18 Feb 2025
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Yulei Qin
Yuncheng Yang
Pengcheng Guo
Gang Li
Hang Shao
Yuchen Shi
Zihan Xu
Yun Gu
Ke Li
Xing Sun
ALM
659
21
0
31 Dec 2024
Deterministic Fokker-Planck Transport -- With Applications to Sampling, Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
Ilja Klebanov
OT
112
0
0
11 Oct 2024
Generalized Coverage for More Robust Low-Budget Active Learning
Wonho Bae
Junhyug Noh
Danica J. Sutherland
343
7
0
16 Jul 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
348
3
0
18 Apr 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
212
6
0
22 Nov 2023
Policy Gradient with Kernel Quadrature
Satoshi Hayakawa
Tetsuro Morimura
OffRL
BDL
292
1
0
23 Oct 2023
An analysis of Ermakov-Zolotukhin quadrature using kernels
Neural Information Processing Systems (NeurIPS), 2023
Ayoub Belhadji
152
14
0
03 Sep 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
263
6
0
09 Jun 2023
Kernel quadrature with randomly pivoted Cholesky
Neural Information Processing Systems (NeurIPS), 2023
Ethan N. Epperly
Elvira Moreno
301
10
0
06 Jun 2023
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality
Neural Information Processing Systems (NeurIPS), 2023
Jose H. Blanchet
Haoxuan Chen
Yiping Lu
Lexing Ying
159
5
0
25 May 2023
Biological Sequence Kernels with Guaranteed Flexibility
Alan N. Amin
Eli N. Weinstein
D. Marks
185
7
0
06 Apr 2023
SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces
Masaki Adachi
Satoshi Hayakawa
Saad Hamid
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
362
7
0
27 Jan 2023
Sampling-based Nyström Approximation and Kernel Quadrature
International Conference on Machine Learning (ICML), 2023
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
344
16
0
23 Jan 2023
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Neural Information Processing Systems (NeurIPS), 2022
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
252
25
0
09 Jun 2022
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
Neural Information Processing Systems (NeurIPS), 2022
Mojmír Mutný
Andreas Krause
253
12
0
26 May 2022
Estimating Rényi's
α
α
α
-Cross-Entropies in a Matrix-Based Way
I. Sledge
José C. Príncipe
167
0
0
24 Sep 2021
Positively Weighted Kernel Quadrature via Subsampling
Neural Information Processing Systems (NeurIPS), 2021
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
386
28
0
20 Jul 2021
Compressed particle methods for expensive models with application in Astronomy and Remote Sensing
IEEE Transactions on Aerospace and Electronic Systems (T-AES), 2021
Luca Martino
Victor Elvira
J. Lopez-Santiago
Gustau Camps-Valls
144
4
0
18 Jul 2021
Compressed Monte Carlo with application in particle filtering
Information Sciences (Inf. Sci.), 2021
Luca Martino
Victor Elvira
137
38
0
18 Jul 2021
Sparse solutions of the kernel herding algorithm by improved gradient approximation
Kazuma Tsuji
Ken’ichiro Tanaka
168
0
0
17 May 2021
Sampling Permutations for Shapley Value Estimation
Journal of machine learning research (JMLR), 2021
Rory Mitchell
Joshua N. Cooper
E. Frank
G. Holmes
237
158
0
25 Apr 2021
Performance analysis of greedy algorithms for minimising a Maximum Mean Discrepancy
Statistics and computing (Stat Comput), 2021
L. Pronzato
160
16
0
19 Jan 2021
Optimal quantisation of probability measures using maximum mean discrepancy
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
272
30
0
14 Oct 2020
Kernel interpolation with continuous volume sampling
International Conference on Machine Learning (ICML), 2020
Ayoub Belhadji
Rémi Bardenet
P. Chainais
112
25
0
22 Feb 2020
Learning Sparse Distributions using Iterative Hard Thresholding
Neural Information Processing Systems (NeurIPS), 2019
Jacky Y. Zhang
Rajiv Khanna
Anastasios Kyrillidis
Oluwasanmi Koyejo
132
5
0
29 Oct 2019
Geometric Rates of Convergence for Kernel-based Sampling Algorithms
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
Rajiv Khanna
Liam Hodgkinson
Michael W. Mahoney
181
2
0
19 Jul 2019
Kernel quadrature with DPPs
Neural Information Processing Systems (NeurIPS), 2019
Ayoub Belhadji
Rémi Bardenet
P. Chainais
192
41
0
18 Jun 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Neural Information Processing Systems (NeurIPS), 2019
Trevor Campbell
Boyan Beronov
187
39
0
07 Jun 2019
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Neural Information Processing Systems (NeurIPS), 2019
Motonobu Kanagawa
Philipp Hennig
183
39
0
24 May 2019
Fast Approximation and Estimation Bounds of Kernel Quadrature for Infinitely Wide Models
Sho Sonoda
171
0
0
02 Feb 2019
On the positivity and magnitudes of Bayesian quadrature weights
Toni Karvonen
Motonobu Kanagawa
Simo Särkkä
190
15
0
20 Dec 2018
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
243
112
0
23 Oct 2018
Bayesian quadrature and energy minimization for space-filling design
L. Pronzato
A. Zhigljavsky
216
9
0
31 Aug 2018
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
236
381
0
06 Jul 2018
Bayesian posterior approximation via greedy particle optimization
Futoshi Futami
Zhenghang Cui
Issei Sato
Masashi Sugiyama
260
23
0
21 May 2018
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi
François‐Xavier Briol
Mark Girolami
376
41
0
12 Jan 2018
On Data-Dependent Random Features for Improved Generalization in Supervised Learning
AAAI Conference on Artificial Intelligence (AAAI), 2017
Shahin Shahrampour
Ahmad Beirami
Vahid Tarokh
109
27
0
19 Dec 2017
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Motonobu Kanagawa
Bharath K. Sriperumbudur
Kenji Fukumizu
287
48
0
01 Sep 2017
On the Sampling Problem for Kernel Quadrature
International Conference on Machine Learning (ICML), 2017
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
201
29
0
11 Jun 2017
Data-driven Random Fourier Features using Stein Effect
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
128
30
0
23 May 2017
Fully symmetric kernel quadrature
Toni Karvonen
Simo Särkkä
184
29
0
18 Mar 2017
Herding Generalizes Diverse M -Best Solutions
Ece Ozkan
Gemma Roig
O. Goksel
Xavier Boix
141
0
0
14 Nov 2016
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
150
76
0
17 Oct 2016
Uncertain programming model for multi-item solid transportation problem
International Journal of Machine Learning and Cybernetics (IJMLC), 2016
Hasan Dalman
357
803
0
31 May 2016
Monte Carlo with Determinantal Point Processes
Rémi Bardenet
A. Hardy
223
85
0
02 May 2016
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
311
56
0
03 Dec 2015
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees
Neural Information Processing Systems (NeurIPS), 2015
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
299
96
0
08 Jun 2015
On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
Francis R. Bach
245
34
0
24 Feb 2015
1
2
Next