ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.2049
  4. Cited By
v1v2 (latest)

Optimally-Weighted Herding is Bayesian Quadrature

Conference on Uncertainty in Artificial Intelligence (UAI), 2012
9 August 2014
Ferenc Huszár
David Duvenaud
ArXiv (abs)PDFHTML

Papers citing "Optimally-Weighted Herding is Bayesian Quadrature"

50 / 54 papers shown
Title
Stationary MMD Points for Cubature
Stationary MMD Points for Cubature
Zonghao Chen
Toni Karvonen
Heishiro Kanagawa
F. Briol
Chris J. Oates
240
0
0
27 May 2025
Solving the Cold Start Problem on One's Own as an End User via Preference Transfer
Solving the Cold Start Problem on One's Own as an End User via Preference Transfer
Ryoma Sato
213
0
0
18 Feb 2025
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models
Yulei Qin
Yuncheng Yang
Pengcheng Guo
Gang Li
Hang Shao
Yuchen Shi
Zihan Xu
Yun Gu
Ke Li
Xing Sun
ALM
659
21
0
31 Dec 2024
Deterministic Fokker-Planck Transport -- With Applications to Sampling,
  Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
Deterministic Fokker-Planck Transport -- With Applications to Sampling, Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
Ilja Klebanov
OT
112
0
0
11 Oct 2024
Generalized Coverage for More Robust Low-Budget Active Learning
Generalized Coverage for More Robust Low-Budget Active Learning
Wonho Bae
Junhyug Noh
Danica J. Sutherland
343
7
0
16 Jul 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization
  via Probabilistic Lifting
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
348
3
0
18 Apr 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
212
6
0
22 Nov 2023
Policy Gradient with Kernel Quadrature
Policy Gradient with Kernel Quadrature
Satoshi Hayakawa
Tetsuro Morimura
OffRLBDL
292
1
0
23 Oct 2023
An analysis of Ermakov-Zolotukhin quadrature using kernels
An analysis of Ermakov-Zolotukhin quadrature using kernelsNeural Information Processing Systems (NeurIPS), 2023
Ayoub Belhadji
152
14
0
03 Sep 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics
  Approach
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics ApproachInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
263
6
0
09 Jun 2023
Kernel quadrature with randomly pivoted Cholesky
Kernel quadrature with randomly pivoted CholeskyNeural Information Processing Systems (NeurIPS), 2023
Ethan N. Epperly
Elvira Moreno
301
10
0
06 Jun 2023
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev
  Embedding and Minimax Optimality
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax OptimalityNeural Information Processing Systems (NeurIPS), 2023
Jose H. Blanchet
Haoxuan Chen
Yiping Lu
Lexing Ying
159
5
0
25 May 2023
Biological Sequence Kernels with Guaranteed Flexibility
Biological Sequence Kernels with Guaranteed Flexibility
Alan N. Amin
Eli N. Weinstein
D. Marks
185
7
0
06 Apr 2023
SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature
  over Discrete and Mixed Spaces
SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces
Masaki Adachi
Satoshi Hayakawa
Saad Hamid
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
362
7
0
27 Jan 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Sampling-based Nyström Approximation and Kernel QuadratureInternational Conference on Machine Learning (ICML), 2023
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
344
16
0
23 Jan 2023
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel RecombinationNeural Information Processing Systems (NeurIPS), 2022
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
252
25
0
09 Jun 2022
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
  Spaces
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert SpacesNeural Information Processing Systems (NeurIPS), 2022
Mojmír Mutný
Andreas Krause
253
12
0
26 May 2022
Estimating Rényi's $α$-Cross-Entropies in a Matrix-Based Way
Estimating Rényi's ααα-Cross-Entropies in a Matrix-Based Way
I. Sledge
José C. Príncipe
167
0
0
24 Sep 2021
Positively Weighted Kernel Quadrature via Subsampling
Positively Weighted Kernel Quadrature via SubsamplingNeural Information Processing Systems (NeurIPS), 2021
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
386
28
0
20 Jul 2021
Compressed particle methods for expensive models with application in
  Astronomy and Remote Sensing
Compressed particle methods for expensive models with application in Astronomy and Remote SensingIEEE Transactions on Aerospace and Electronic Systems (T-AES), 2021
Luca Martino
Victor Elvira
J. Lopez-Santiago
Gustau Camps-Valls
144
4
0
18 Jul 2021
Compressed Monte Carlo with application in particle filtering
Compressed Monte Carlo with application in particle filteringInformation Sciences (Inf. Sci.), 2021
Luca Martino
Victor Elvira
137
38
0
18 Jul 2021
Sparse solutions of the kernel herding algorithm by improved gradient
  approximation
Sparse solutions of the kernel herding algorithm by improved gradient approximation
Kazuma Tsuji
Ken’ichiro Tanaka
168
0
0
17 May 2021
Sampling Permutations for Shapley Value Estimation
Sampling Permutations for Shapley Value EstimationJournal of machine learning research (JMLR), 2021
Rory Mitchell
Joshua N. Cooper
E. Frank
G. Holmes
237
158
0
25 Apr 2021
Performance analysis of greedy algorithms for minimising a Maximum Mean
  Discrepancy
Performance analysis of greedy algorithms for minimising a Maximum Mean DiscrepancyStatistics and computing (Stat Comput), 2021
L. Pronzato
160
16
0
19 Jan 2021
Optimal quantisation of probability measures using maximum mean
  discrepancy
Optimal quantisation of probability measures using maximum mean discrepancy
Onur Teymur
Jackson Gorham
M. Riabiz
Chris J. Oates
272
30
0
14 Oct 2020
Kernel interpolation with continuous volume sampling
Kernel interpolation with continuous volume samplingInternational Conference on Machine Learning (ICML), 2020
Ayoub Belhadji
Rémi Bardenet
P. Chainais
112
25
0
22 Feb 2020
Learning Sparse Distributions using Iterative Hard Thresholding
Learning Sparse Distributions using Iterative Hard ThresholdingNeural Information Processing Systems (NeurIPS), 2019
Jacky Y. Zhang
Rajiv Khanna
Anastasios Kyrillidis
Oluwasanmi Koyejo
132
5
0
29 Oct 2019
Geometric Rates of Convergence for Kernel-based Sampling Algorithms
Geometric Rates of Convergence for Kernel-based Sampling AlgorithmsConference on Uncertainty in Artificial Intelligence (UAI), 2019
Rajiv Khanna
Liam Hodgkinson
Michael W. Mahoney
181
2
0
19 Jul 2019
Kernel quadrature with DPPs
Kernel quadrature with DPPsNeural Information Processing Systems (NeurIPS), 2019
Ayoub Belhadji
Rémi Bardenet
P. Chainais
192
41
0
18 Jun 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Sparse Variational Inference: Bayesian Coresets from ScratchNeural Information Processing Systems (NeurIPS), 2019
Trevor Campbell
Boyan Beronov
187
39
0
07 Jun 2019
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Convergence Guarantees for Adaptive Bayesian Quadrature MethodsNeural Information Processing Systems (NeurIPS), 2019
Motonobu Kanagawa
Philipp Hennig
183
39
0
24 May 2019
Fast Approximation and Estimation Bounds of Kernel Quadrature for
  Infinitely Wide Models
Fast Approximation and Estimation Bounds of Kernel Quadrature for Infinitely Wide Models
Sho Sonoda
171
0
0
02 Feb 2019
On the positivity and magnitudes of Bayesian quadrature weights
On the positivity and magnitudes of Bayesian quadrature weights
Toni Karvonen
Motonobu Kanagawa
Simo Särkkä
190
15
0
20 Dec 2018
Interpreting Black Box Predictions using Fisher Kernels
Interpreting Black Box Predictions using Fisher Kernels
Rajiv Khanna
Been Kim
Joydeep Ghosh
Oluwasanmi Koyejo
FAtt
243
112
0
23 Oct 2018
Bayesian quadrature and energy minimization for space-filling design
Bayesian quadrature and energy minimization for space-filling design
L. Pronzato
A. Zhigljavsky
216
9
0
31 Aug 2018
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GPBDL
236
381
0
06 Jul 2018
Bayesian posterior approximation via greedy particle optimization
Bayesian posterior approximation via greedy particle optimization
Futoshi Futami
Zhenghang Cui
Issei Sato
Masashi Sugiyama
260
23
0
21 May 2018
Bayesian Quadrature for Multiple Related Integrals
Bayesian Quadrature for Multiple Related Integrals
Xiaoyue Xi
François‐Xavier Briol
Mark Girolami
376
41
0
12 Jan 2018
On Data-Dependent Random Features for Improved Generalization in
  Supervised Learning
On Data-Dependent Random Features for Improved Generalization in Supervised LearningAAAI Conference on Artificial Intelligence (AAAI), 2017
Shahin Shahrampour
Ahmad Beirami
Vahid Tarokh
109
27
0
19 Dec 2017
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in
  Misspecified Settings
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Motonobu Kanagawa
Bharath K. Sriperumbudur
Kenji Fukumizu
287
48
0
01 Sep 2017
On the Sampling Problem for Kernel Quadrature
On the Sampling Problem for Kernel QuadratureInternational Conference on Machine Learning (ICML), 2017
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
201
29
0
11 Jun 2017
Data-driven Random Fourier Features using Stein Effect
Data-driven Random Fourier Features using Stein Effect
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
128
30
0
23 May 2017
Fully symmetric kernel quadrature
Fully symmetric kernel quadrature
Toni Karvonen
Simo Särkkä
184
29
0
18 Mar 2017
Herding Generalizes Diverse M -Best Solutions
Herding Generalizes Diverse M -Best Solutions
Ece Ozkan
Gemma Roig
O. Goksel
Xavier Boix
141
0
0
14 Nov 2016
Black-box Importance Sampling
Black-box Importance Sampling
Qiang Liu
Jason D. Lee
FAtt
150
76
0
17 Oct 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problemInternational Journal of Machine Learning and Cybernetics (IJMLC), 2016
Hasan Dalman
357
803
0
31 May 2016
Monte Carlo with Determinantal Point Processes
Monte Carlo with Determinantal Point Processes
Rémi Bardenet
A. Hardy
223
85
0
02 May 2016
Probabilistic Integration: A Role in Statistical Computation?
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
311
56
0
03 Dec 2015
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with
  Theoretical Guarantees
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical GuaranteesNeural Information Processing Systems (NeurIPS), 2015
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
299
96
0
08 Jun 2015
On the Equivalence between Kernel Quadrature Rules and Random Feature
  Expansions
On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
Francis R. Bach
245
34
0
24 Feb 2015
12
Next