ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.6801
  4. Cited By
Dimensionality Reduction for k-Means Clustering and Low Rank
  Approximation

Dimensionality Reduction for k-Means Clustering and Low Rank Approximation

24 October 2014
Michael B. Cohen
Sam Elder
Cameron Musco
Christopher Musco
Madalina Persu
ArXivPDFHTML

Papers citing "Dimensionality Reduction for k-Means Clustering and Low Rank Approximation"

40 / 40 papers shown
Title
Guessing Efficiently for Constrained Subspace Approximation
Guessing Efficiently for Constrained Subspace Approximation
Aditya Bhaskara
S. Mahabadi
Madhusudhan Reddy Pittu
A. Vakilian
David P. Woodruff
40
0
0
29 Apr 2025
Distributed Clustering based on Distributional Kernel
Distributed Clustering based on Distributional Kernel
Hang Zhang
Yang Xu
Lei Gong
Ye Zhu
Kai Ming Ting
18
0
0
14 Sep 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
42
2
0
09 May 2024
No Dimensional Sampling Coresets for Classification
No Dimensional Sampling Coresets for Classification
M. Alishahi
Jeff M. Phillips
39
1
0
07 Feb 2024
Learning the Positions in CountSketch
Learning the Positions in CountSketch
Yi Li
Honghao Lin
Simin Liu
A. Vakilian
David P. Woodruff
29
18
0
11 Jun 2023
Exact Non-Oblivious Performance of Rademacher Random Embeddings
Exact Non-Oblivious Performance of Rademacher Random Embeddings
Maciej Skorski
Alessandro Temperoni
11
0
0
21 Mar 2023
Replicable Clustering
Replicable Clustering
Hossein Esfandiari
Amin Karbasi
Vahab Mirrokni
Grigoris Velegkas
Felix Y. Zhou
29
13
0
20 Feb 2023
Learning Sparsity and Randomness for Data-driven Low Rank Approximation
Learning Sparsity and Randomness for Data-driven Low Rank Approximation
Tiejin Chen
Yicheng Tao
11
0
0
15 Dec 2022
Dynamic Tensor Product Regression
Dynamic Tensor Product Regression
Aravind Reddy
Zhao-quan Song
Licheng Zhang
45
20
0
08 Oct 2022
Sample Efficient Learning of Factored Embeddings of Tensor Fields
Sample Efficient Learning of Factored Embeddings of Tensor Fields
Taemin Heo
Chandrajit L. Bajaj
MedIm
11
0
0
01 Sep 2022
Explainable k-means. Don't be greedy, plant bigger trees!
Explainable k-means. Don't be greedy, plant bigger trees!
K. Makarychev
Liren Shan
24
22
0
04 Nov 2021
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
  Update
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
37
26
0
15 Jul 2021
Near-optimal Algorithms for Explainable k-Medians and k-Means
Near-optimal Algorithms for Explainable k-Medians and k-Means
K. Makarychev
Liren Shan
25
25
0
02 Jul 2021
Adversarial Robustness of Streaming Algorithms through Importance
  Sampling
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
Lifelong Learning with Sketched Structural Regularization
Lifelong Learning with Sketched Structural Regularization
Haoran Li
A. Krishnan
Jingfeng Wu
Soheil Kolouri
Praveen K. Pilly
Vladimir Braverman
CLL
22
17
0
17 Apr 2021
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
Nadiia Chepurko
K. Clarkson
L. Horesh
Honghao Lin
David P. Woodruff
19
24
0
09 Nov 2020
Hutch++: Optimal Stochastic Trace Estimation
Hutch++: Optimal Stochastic Trace Estimation
R. A. Meyer
Cameron Musco
Christopher Musco
David P. Woodruff
18
103
0
19 Oct 2020
A Framework for Private Matrix Analysis
A Framework for Private Matrix Analysis
Jalaj Upadhyay
Sarvagya Upadhyay
24
4
0
06 Sep 2020
Scalable Initialization Methods for Large-Scale Clustering
Scalable Initialization Methods for Large-Scale Clustering
J. Hämäläinen
T. Kärkkäinen
T. Rossi
15
2
0
23 Jul 2020
Fair clustering via equitable group representations
Fair clustering via equitable group representations
Mohsen Abbasi
Aditya Bhaskara
Suresh Venkatasubramanian
FaML
FedML
31
86
0
19 Jun 2020
Precise expressions for random projections: Low-rank approximation and
  randomized Newton
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
32
23
0
18 Jun 2020
Coresets for Clustering in Euclidean Spaces: Importance Sampling is
  Nearly Optimal
Coresets for Clustering in Euclidean Spaces: Importance Sampling is Nearly Optimal
Lingxiao Huang
Nisheeth K. Vishnoi
13
76
0
14 Apr 2020
On Coresets for Support Vector Machines
On Coresets for Support Vector Machines
M. Tukan
Cenk Baykal
Dan Feldman
Daniela Rus
27
27
0
15 Feb 2020
Learning-Based Low-Rank Approximations
Learning-Based Low-Rank Approximations
Piotr Indyk
A. Vakilian
Yang Yuan
37
67
0
30 Oct 2019
Optimal Sketching for Kronecker Product Regression and Low Rank
  Approximation
Optimal Sketching for Kronecker Product Regression and Low Rank Approximation
H. Diao
Rajesh Jayaram
Zhao-quan Song
Wen Sun
David P. Woodruff
16
43
0
29 Sep 2019
De-anonymization Attacks on Neuroimaging Datasets
De-anonymization Attacks on Neuroimaging Datasets
V. Ravindra
A. Grama
15
16
0
08 Aug 2019
Tight Sensitivity Bounds For Smaller Coresets
Tight Sensitivity Bounds For Smaller Coresets
Alaa Maalouf
Adiel Statman
Dan Feldman
24
18
0
02 Jul 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
  $k$-means Clustering
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel kkk-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
26
6
0
15 May 2019
Scalable Fair Clustering
Scalable Fair Clustering
A. Backurs
Piotr Indyk
Krzysztof Onak
B. Schieber
A. Vakilian
Tal Wagner
17
197
0
10 Feb 2019
Contrastive Multivariate Singular Spectrum Analysis
Contrastive Multivariate Singular Spectrum Analysis
Abdi-Hakin Dirie
Abubakar Abid
James Zou
6
11
0
31 Oct 2018
A Practical Algorithm for Distributed Clustering and Outlier Detection
A Practical Algorithm for Distributed Clustering and Outlier Detection
Jiecao Chen
Erfan Sadeqi Azer
Qin Zhang
18
25
0
24 May 2018
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Cameron Musco
David P. Woodruff
20
13
0
05 Nov 2017
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from
  Streaming Data
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
23
79
0
18 Jun 2017
Scalable Kernel K-Means Clustering with Nystrom Approximation:
  Relative-Error Bounds
Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds
Shusen Wang
Alex Gittens
Michael W. Mahoney
30
127
0
09 Jun 2017
Relative Error Tensor Low Rank Approximation
Relative Error Tensor Low Rank Approximation
Zhao-quan Song
David P. Woodruff
Peilin Zhong
22
122
0
26 Apr 2017
On the Local Structure of Stable Clustering Instances
On the Local Structure of Stable Clustering Instances
Vincent Cohen-Addad
Chris Schwiegelshohn
33
47
0
29 Jan 2017
Practical sketching algorithms for low-rank matrix approximation
Practical sketching algorithms for low-rank matrix approximation
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
22
201
0
31 Aug 2016
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
Zeyuan Allen-Zhu
Yuanzhi Li
23
128
0
12 Jul 2016
Compressive Spectral Clustering
Compressive Spectral Clustering
Nicolas M Tremblay
Gilles Puy
Remi Gribonval
P. Vandergheynst
18
112
0
05 Feb 2016
Improved Distributed Principal Component Analysis
Improved Distributed Principal Component Analysis
Maria-Florina Balcan
Vandana Kanchanapally
Yingyu Liang
David P. Woodruff
42
148
0
25 Aug 2014
1