Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.0254
Cited By
v1
v2
v3 (latest)
Variational Inference for Gaussian Process Modulated Poisson Processes
2 November 2014
C. Lloyd
Tom Gunter
Michael A. Osborne
Stephen J. Roberts
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference for Gaussian Process Modulated Poisson Processes"
34 / 34 papers shown
Title
K
2
^2
2
IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
Hideaki Kim
Tomoharu Iwata
Akinori Fujino
18
0
0
30 May 2025
Nonparametric estimation of Hawkes processes with RKHSs
Anna Bonnet
Maxime Sangnier
99
0
0
01 Nov 2024
Causal Modeling of Policy Interventions From Sequences of Treatments and Outcomes
Caglar Hizli
S. T. John
A. Juuti
Tuure Saarinen
Kirsi Pietiläinen
Pekka Marttinen
CML
59
1
0
09 Sep 2022
Survival Analysis of the Compressor Station Based on Hawkes Process with Weibull Base Intensity
Lu-ning Zhang
Jian Liu
Xin Zuo
50
0
0
27 Dec 2021
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian Random Function Approach
Minyoung Kim
Vladimir Pavlovic
BDL
91
6
0
05 Feb 2021
Multi-output Gaussian Process Modulated Poisson Processes for Event Prediction
Salman Jahani
Shiyu Zhou
D. Veeramani
Jeff Schmidt
58
11
0
06 Nov 2020
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
45
25
0
07 Oct 2020
Graph Convolutional Networks Reveal Neural Connections Encoding Prosthetic Sensation
Vivek Subramanian
Joshua Khani
20
0
0
23 Aug 2020
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
36
6
0
01 Jul 2020
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
61
5
0
08 Jun 2020
BART-based inference for Poisson processes
Stamatina Lamprinakou
Mauricio Barahona
Seth Flaxman
Sarah Filippi
Axel Gandy
E. McCoy
37
6
0
16 May 2020
Scalable Inference for Nonparametric Hawkes Process Using Pólya-Gamma Augmentation
Feng Zhou
Zhidong Li
Xuhui Fan
Yang Wang
Arcot Sowmya
Fang Chen
53
2
0
29 Oct 2019
Posterior Contraction Rates for Gaussian Cox Processes with Non-identically Distributed Data
James A. Grant
David S. Leslie
49
1
0
20 Jun 2019
Efficient EM-Variational Inference for Hawkes Process
Feng Zhou
Zhidong Li
Xuhui Fan
Yang Wang
Arcot Sowmya
Fang Chen
28
8
0
29 May 2019
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
85
17
0
09 Mar 2019
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data
Gabriel Loaiza-Ganem
Sean M. Perkins
Karen E. Schroeder
Mark M. Churchland
John P. Cunningham
3DPC
76
14
0
06 Mar 2019
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints
A. F. López-Lopera
S. T. John
N. Durrande
72
16
0
28 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLL
BDL
71
187
0
31 Jan 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
67
24
0
21 Dec 2018
Efficient Non-parametric Bayesian Hawkes Processes
Rui Zhang
Christian J. Walder
Marian-Andrei Rizoiu
Lexing Xie
61
38
0
08 Oct 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
82
36
0
02 Aug 2018
Efficient Inference in Multi-task Cox Process Models
Virginia Aglietti
Theodoros Damoulas
Edwin V. Bonilla
58
8
0
24 May 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
48
38
0
22 May 2018
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
57
31
0
03 Apr 2018
Decoupled Learning for Factorial Marked Temporal Point Processes
Weichang Wu
Junchi Yan
Xiaokang Yang
H. Zha
40
20
0
21 Jan 2018
Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: a winning solution to the NIJ "Real-Time Crime Forecasting Challenge"
Seth Flaxman
Michael Chirico
Pau Pereira
Charles E. Loeffler
62
50
0
09 Jan 2018
Bayesian Computation for Log-Gaussian Cox Processes--A Comparative Analysis of Methods
Ming Teng
F. Nathoo
T. Johnson
57
38
0
03 Jan 2017
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
87
202
0
21 Nov 2016
Poisson intensity estimation with reproducing kernels
Seth Flaxman
Yee Whye Teh
Dino Sejdinovic
89
48
0
27 Oct 2016
Patient Flow Prediction via Discriminative Learning of Mutually-Correcting Processes
Hongteng Xu
Weichang Wu
S. Nemati
H. Zha
AI4TS
OOD
38
46
0
14 Feb 2016
Learning Granger Causality for Hawkes Processes
Hongteng Xu
Mehrdad Farajtabar
H. Zha
AI4TS
CML
71
227
0
14 Feb 2016
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
78
21
0
27 Oct 2015
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
83
141
0
12 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
108
192
0
27 Apr 2015
1