ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.0254
  4. Cited By
Variational Inference for Gaussian Process Modulated Poisson Processes
v1v2v3 (latest)

Variational Inference for Gaussian Process Modulated Poisson Processes

2 November 2014
C. Lloyd
Tom Gunter
Michael A. Osborne
Stephen J. Roberts
ArXiv (abs)PDFHTML

Papers citing "Variational Inference for Gaussian Process Modulated Poisson Processes"

34 / 34 papers shown
Title
K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
K2^22IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
Hideaki Kim
Tomoharu Iwata
Akinori Fujino
18
0
0
30 May 2025
Nonparametric estimation of Hawkes processes with RKHSs
Nonparametric estimation of Hawkes processes with RKHSs
Anna Bonnet
Maxime Sangnier
99
0
0
01 Nov 2024
Causal Modeling of Policy Interventions From Sequences of Treatments and
  Outcomes
Causal Modeling of Policy Interventions From Sequences of Treatments and Outcomes
Caglar Hizli
S. T. John
A. Juuti
Tuure Saarinen
Kirsi Pietiläinen
Pekka Marttinen
CML
59
1
0
09 Sep 2022
Survival Analysis of the Compressor Station Based on Hawkes Process with
  Weibull Base Intensity
Survival Analysis of the Compressor Station Based on Hawkes Process with Weibull Base Intensity
Lu-ning Zhang
Jian Liu
Xin Zuo
50
0
0
27 Dec 2021
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
  Random Function Approach
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian Random Function Approach
Minyoung Kim
Vladimir Pavlovic
BDL
91
6
0
05 Feb 2021
Multi-output Gaussian Process Modulated Poisson Processes for Event
  Prediction
Multi-output Gaussian Process Modulated Poisson Processes for Event Prediction
Salman Jahani
Shiyu Zhou
D. Veeramani
Jeff Schmidt
58
11
0
06 Nov 2020
Scalable Normalizing Flows for Permutation Invariant Densities
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
45
25
0
07 Oct 2020
Graph Convolutional Networks Reveal Neural Connections Encoding
  Prosthetic Sensation
Graph Convolutional Networks Reveal Neural Connections Encoding Prosthetic Sensation
Vivek Subramanian
Joshua Khani
20
0
0
23 Aug 2020
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using
  Measure Transport
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
36
6
0
01 Jul 2020
All your loss are belong to Bayes
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
61
5
0
08 Jun 2020
BART-based inference for Poisson processes
BART-based inference for Poisson processes
Stamatina Lamprinakou
Mauricio Barahona
Seth Flaxman
Sarah Filippi
Axel Gandy
E. McCoy
37
6
0
16 May 2020
Scalable Inference for Nonparametric Hawkes Process Using
  Pólya-Gamma Augmentation
Scalable Inference for Nonparametric Hawkes Process Using Pólya-Gamma Augmentation
Feng Zhou
Zhidong Li
Xuhui Fan
Yang Wang
Arcot Sowmya
Fang Chen
53
2
0
29 Oct 2019
Posterior Contraction Rates for Gaussian Cox Processes with
  Non-identically Distributed Data
Posterior Contraction Rates for Gaussian Cox Processes with Non-identically Distributed Data
James A. Grant
David S. Leslie
49
1
0
20 Jun 2019
Efficient EM-Variational Inference for Hawkes Process
Efficient EM-Variational Inference for Hawkes Process
Feng Zhou
Zhidong Li
Xuhui Fan
Yang Wang
Arcot Sowmya
Fang Chen
28
8
0
29 May 2019
Variational Inference of Joint Models using Multivariate Gaussian
  Convolution Processes
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
85
17
0
09 Mar 2019
Deep Random Splines for Point Process Intensity Estimation of Neural
  Population Data
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data
Gabriel Loaiza-Ganem
Sean M. Perkins
Karen E. Schroeder
Mark M. Churchland
John P. Cunningham
3DPC
76
14
0
06 Mar 2019
Gaussian Process Modulated Cox Processes under Linear Inequality
  Constraints
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints
A. F. López-Lopera
S. T. John
N. Durrande
72
16
0
28 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
71
187
0
31 Jan 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia
  Language
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GPVLM
67
24
0
21 Dec 2018
Efficient Non-parametric Bayesian Hawkes Processes
Efficient Non-parametric Bayesian Hawkes Processes
Rui Zhang
Christian J. Walder
Marian-Andrei Rizoiu
Lexing Xie
61
38
0
08 Oct 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
82
36
0
02 Aug 2018
Efficient Inference in Multi-task Cox Process Models
Efficient Inference in Multi-task Cox Process Models
Virginia Aglietti
Theodoros Damoulas
Edwin V. Bonilla
58
8
0
24 May 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
48
38
0
22 May 2018
Large-Scale Cox Process Inference using Variational Fourier Features
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
57
31
0
03 Apr 2018
Decoupled Learning for Factorial Marked Temporal Point Processes
Decoupled Learning for Factorial Marked Temporal Point Processes
Weichang Wu
Junchi Yan
Xiaokang Yang
H. Zha
40
20
0
21 Jan 2018
Scalable high-resolution forecasting of sparse spatiotemporal events
  with kernel methods: a winning solution to the NIJ "Real-Time Crime
  Forecasting Challenge"
Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: a winning solution to the NIJ "Real-Time Crime Forecasting Challenge"
Seth Flaxman
Michael Chirico
Pau Pereira
Charles E. Loeffler
62
50
0
09 Jan 2018
Bayesian Computation for Log-Gaussian Cox Processes--A Comparative
  Analysis of Methods
Bayesian Computation for Log-Gaussian Cox Processes--A Comparative Analysis of Methods
Ming Teng
F. Nathoo
T. Johnson
57
38
0
03 Jan 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
87
202
0
21 Nov 2016
Poisson intensity estimation with reproducing kernels
Poisson intensity estimation with reproducing kernels
Seth Flaxman
Yee Whye Teh
Dino Sejdinovic
89
48
0
27 Oct 2016
Patient Flow Prediction via Discriminative Learning of
  Mutually-Correcting Processes
Patient Flow Prediction via Discriminative Learning of Mutually-Correcting Processes
Hongteng Xu
Weichang Wu
S. Nemati
H. Zha
AI4TSOOD
38
46
0
14 Feb 2016
Learning Granger Causality for Hawkes Processes
Learning Granger Causality for Hawkes Processes
Hongteng Xu
Mehrdad Farajtabar
H. Zha
AI4TSCML
71
227
0
14 Feb 2016
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
78
21
0
27 Oct 2015
MCMC for Variationally Sparse Gaussian Processes
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
83
141
0
12 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
108
192
0
27 Apr 2015
1