ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.0296
  4. Cited By
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
v1v2 (latest)

Geodesic Exponential Kernels: When Curvature and Linearity Conflict

2 November 2014
Aasa Feragen
F. Lauze
Søren Hauberg
    BDL
ArXiv (abs)PDFHTML

Papers citing "Geodesic Exponential Kernels: When Curvature and Linearity Conflict"

22 / 72 papers shown
Title
Wasserstein Weisfeiler-Lehman Graph Kernels
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
76
201
0
04 Jun 2019
Probabilistic Kernel Support Vector Machines
Probabilistic Kernel Support Vector Machines
Yongxin Chen
T. Georgiou
Allen Tannenbaum
27
1
0
14 Apr 2019
Fast and Robust Shortest Paths on Manifolds Learned from Data
Fast and Robust Shortest Paths on Manifolds Learned from Data
Georgios Arvanitidis
Søren Hauberg
Philipp Hennig
Michael Schober
69
37
0
22 Jan 2019
Poincaré Wasserstein Autoencoder
Poincaré Wasserstein Autoencoder
Ivan Ovinnikov
77
17
0
05 Jan 2019
Generalization Properties of hyper-RKHS and its Applications
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu
Lei Shi
Xiaolin Huang
Jie Yang
Johan A. K. Suykens
46
4
0
26 Sep 2018
Semi-convolutional Operators for Instance Segmentation
Semi-convolutional Operators for Instance Segmentation
David Novotny
Samuel Albanie
Diane Larlus
Andrea Vedaldi
ISeg
70
85
0
27 Jul 2018
Convex Class Model on Symmetric Positive Definite Manifolds
Convex Class Model on Symmetric Positive Definite Manifolds
Kun-li Zhao
Arnold Wiliem
Shaokang Chen
Brian C. Lovell
42
8
0
14 Jun 2018
Dictionary Learning and Sparse Coding on Statistical Manifolds
Dictionary Learning and Sparse Coding on Statistical Manifolds
Rudrasis Chakraborty
Monami Banerjee
B. Vemuri
31
0
0
03 May 2018
Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence
  Diagrams
Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams
Tam Le
M. Yamada
107
80
0
10 Feb 2018
Supervised Learning with Indefinite Topological Kernels
Supervised Learning with Indefinite Topological Kernels
T. Padellini
P. Brutti
52
6
0
20 Sep 2017
cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600
  Papers Survey
cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey
Hirokatsu Kataoka
Soma Shirakabe
Yun He
S. Ueta
Teppei Suzuki
...
Ryousuke Takasawa
Masataka Fuchida
Yudai Miyashita
Kazushige Okayasu
Yuta Matsuzaki
83
1
0
20 Jul 2017
Sliced Wasserstein Kernel for Persistence Diagrams
Sliced Wasserstein Kernel for Persistence Diagrams
Mathieu Carrière
Marco Cuturi
S. Oudot
76
239
0
11 Jun 2017
Multivariate Regression with Gross Errors on Manifold-valued Data
Multivariate Regression with Gross Errors on Manifold-valued Data
Xiaowei Zhang
Xudong Shi
Yu Sun
Li Cheng
38
8
0
26 Mar 2017
A Gaussian Process Regression Model for Distribution Inputs
A Gaussian Process Regression Model for Distribution Inputs
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
86
53
0
31 Jan 2017
Kernel Methods on Approximate Infinite-Dimensional Covariance Operators
  for Image Classification
Kernel Methods on Approximate Infinite-Dimensional Covariance Operators for Image Classification
H. Q. Minh
Marco San-Biagio
Loris Bazzani
Vittorio Murino
34
3
0
29 Sep 2016
cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey
cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey
Hirokatsu Kataoka
Yudai Miyashita
Tomoaki K. Yamabe
Soma Shirakabe
Shin-ichi Sato
...
Kaori Abe
Takaaki Imanari
Naomichi Kobayashi
Shinichiro Morita
Akio Nakamura
47
2
0
26 May 2016
Dimensionality Reduction on SPD Manifolds: The Emergence of
  Geometry-Aware Methods
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods
Mehrtash Harandi
Mathieu Salzmann
Leonid Sigal
60
193
0
20 May 2016
An information theoretic formulation of the Dictionary Learning and Sparse Coding Problems on Statistical Manifolds
Rudrasis Chakraborty
Monami Banerjee
Victoria G. Crawford
B. Vemuri
32
1
0
23 Apr 2016
Sliced Wasserstein Kernels for Probability Distributions
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
85
161
0
10 Nov 2015
Efficient Clustering on Riemannian Manifolds: A Kernelised Random
  Projection Approach
Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach
Kun-li Zhao
A. Alavi
Arnold Wiliem
Brian C. Lovell
39
23
0
18 Sep 2015
Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs
Beyond Gauss: Image-Set Matching on the Riemannian Manifold of PDFs
Mehrtash Harandi
Mathieu Salzmann
Mahsa Baktash
52
48
0
31 Jul 2015
Riemannian Dictionary Learning and Sparse Coding for Positive Definite
  Matrices
Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices
A. Cherian
S. Sra
62
119
0
10 Jul 2015
Previous
12