Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.0296
Cited By
v1
v2 (latest)
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
2 November 2014
Aasa Feragen
F. Lauze
Søren Hauberg
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Geodesic Exponential Kernels: When Curvature and Linearity Conflict"
50 / 72 papers shown
Title
Categorical and geometric methods in statistical, manifold, and machine learning
H. Lê
Hà Quang Minh
Frederic Protin
W. Tuschmann
AI4CE
57
0
0
06 May 2025
A probabilistic view on Riemannian machine learning models for SPD matrices
Thibault de Surrel
Florian Yger
Fabien Lotte
Sylvain Chevallier
53
0
0
05 May 2025
Scalable Geometric Learning with Correlation-Based Functional Brain Networks
Kisung You
Yelim Lee
Hae-Jeong Park
99
0
0
31 Mar 2025
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
111
0
0
23 Dec 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
404
0
0
22 Oct 2024
Bayesian Optimal Experimental Design for Robot Kinematic Calibration
Ersin Daş
Thomas Touma
J. W. Burdick
123
0
0
17 Sep 2024
The GeometricKernels Package: Heat and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs
P. Mostowsky
Vincent Dutordoir
I. Azangulov
Noémie Jaquier
Michael John Hutchinson
Aditya Ravuri
Leonel Rozo
Alexander Terenin
Viacheslav Borovitskiy
76
6
0
10 Jul 2024
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
68
5
0
07 Jun 2024
Scalable Bayesian inference for heat kernel Gaussian processes on manifolds
Junhui He
Guoxuan Ma
Jian Kang
Ying Yang
50
0
0
22 May 2024
Sliced-Wasserstein Estimation with Spherical Harmonics as Control Variates
Rémi Leluc
Aymeric Dieuleveut
Franccois Portier
Johan Segers
Aigerim Zhuman
78
7
0
02 Feb 2024
Metric Space Magnitude for Evaluating the Diversity of Latent Representations
K. Limbeck
R. Andreeva
Rik Sarkar
Bastian Rieck
180
4
0
27 Nov 2023
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
50
4
0
30 Oct 2023
Invariant kernels on Riemannian symmetric spaces: a harmonic-analytic approach
Nathael Da Costa
Cyrus Mostajeran
Juan-Pablo Ortega
Salem Said
59
4
0
30 Oct 2023
Geometric Learning with Positively Decomposable Kernels
Nathael Da Costa
Cyrus Mostajeran
Juan-Pablo Ortega
Salem Said
52
3
0
20 Oct 2023
L3DMC: Lifelong Learning using Distillation via Mixed-Curvature Space
Kaushik Roy
Peyman Moghadam
Mehrtash Harandi
91
7
0
31 Jul 2023
Stability and Inference of the Euler Characteristic Transform
L. Marsh
David Beers
88
6
0
23 Mar 2023
Gaussian Process on the Product of Directional Manifolds
Ziyu Cao
Kailai Li
GP
169
1
0
13 Mar 2023
Gaussian kernels on non-simply-connected closed Riemannian manifolds are never positive definite
Siran Li
53
3
0
12 Mar 2023
The Gaussian kernel on the circle and spaces that admit isometric embeddings of the circle
Nathael Da Costa
Cyrus Mostajeran
Juan-Pablo Ortega
BDL
59
4
0
21 Feb 2023
Horospherical Decision Boundaries for Large Margin Classification in Hyperbolic Space
Xiran Fan
Chun-Hao Yang
B. Vemuri
58
8
0
14 Feb 2023
Curvature Filtrations for Graph Generative Model Evaluation
Joshua Southern
Jeremy Wayland
Michael M. Bronstein
Bastian Rieck
82
17
0
30 Jan 2023
Intrinsic Gaussian Process on Unknown Manifolds with Probabilistic Metrics
Mu Niu
Zhenwen Dai
P. Cheung
Yizhu Wang
63
5
0
16 Jan 2023
Gaussian Process regression over discrete probability measures: on the non-stationarity relation between Euclidean and Wasserstein Squared Exponential Kernels
Antonio Candelieri
Andrea Ponti
Francesco Archetti
88
1
0
02 Dec 2022
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Clément Bonet
Laetitia Chapel
Lucas Drumetz
Nicolas Courty
80
15
0
18 Nov 2022
Hyperbolic Centroid Calculations for Text Classification
Aydın Gerek
Cuneyt Ferahlar
Bilge cSipal Sert
Mehmet Can Yuney
Onur Tacsdemir
Zeynep Billur Kalafat
Mert Kelkit
M. Ganiz
46
0
0
08 Nov 2022
Optimization on Manifolds via Graph Gaussian Processes
Hwanwoo Kim
D. Sanz-Alonso
Ruiyi Yang
82
2
0
20 Oct 2022
Boundary-Aware Uncertainty for Feature Attribution Explainers
Davin Hill
A. Masoomi
Max Torop
S. Ghimire
Jennifer Dy
FAtt
147
3
0
05 Oct 2022
Self-supervised Representation Learning on Electronic Health Records with Graph Kernel Infomax
Hao-Ren Yao
Nairen Cao
Katina Russell
D. Chang
O. Frieder
Jeremy T. Fineman
SSL
71
1
0
01 Sep 2022
Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the compact case
I. Azangulov
A. Smolensky
Alexander Terenin
Viacheslav Borovitskiy
97
21
0
31 Aug 2022
Crosslinguistic word order variation reflects evolutionary pressures of dependency and information locality
Michael Hahn
Yang Xu
49
18
0
09 Jun 2022
Time-inhomogeneous diffusion geometry and topology
G. Huguet
Alexander Tong
Bastian Rieck
Je-chun Huang
Manik Kuchroo
M. Hirn
Guy Wolf
Smita Krishnaswamy
AI4CE
32
4
0
28 Mar 2022
Distribution Regression with Sliced Wasserstein Kernels
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
54
17
0
08 Feb 2022
Geodesic squared exponential kernel for non-rigid shape registration
Florent Jousse
Xavier Pennec
H. Delingette
M. González
21
3
0
22 Dec 2021
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
81
37
0
02 Nov 2021
Generalized Shape Metrics on Neural Representations
Alex H. Williams
Erin M Kunz
Simon Kornblith
Scott W. Linderman
MedIm
65
105
0
27 Oct 2021
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
68
22
0
27 Oct 2021
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
72
17
0
26 Oct 2021
Dimension Reduction for Fréchet Regression
Q. Zhang
Lingzhou Xue
Bing Li
69
15
0
01 Oct 2021
Marginalising over Stationary Kernels with Bayesian Quadrature
Saad Hamid
Sebastian Schulze
Michael A. Osborne
Stephen J. Roberts
GP
55
4
0
14 Jun 2021
Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
Leslie O’Bray
Max Horn
Bastian Rieck
Karsten Borgwardt
112
41
0
02 Jun 2021
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
Didong Li
Wenpin Tang
Sudipto Banerjee
87
14
0
08 Apr 2021
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
135
9
0
18 Dec 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
53
82
0
29 Oct 2020
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier
Leonel Rozo
103
24
0
21 Oct 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
99
71
0
09 Sep 2020
Likelihood-Free Gaussian Process for Regression
Yuta Shikuri
28
0
0
24 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
128
123
0
17 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
84
32
0
12 Jun 2020
Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures
Fanghui Liu
Xiaolin Huang
Yingyi Chen
Johan A. K. Suykens
25
0
0
30 May 2020
Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
Noémie Jaquier
Leonel Rozo
Sylvain Calinon
Mathias Bürger
75
54
0
11 Oct 2019
1
2
Next