ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.0306
  4. Cited By
Fast Randomized Kernel Methods With Statistical Guarantees
v1v2v3 (latest)

Fast Randomized Kernel Methods With Statistical Guarantees

2 November 2014
A. Alaoui
Michael W. Mahoney
ArXiv (abs)PDFHTML

Papers citing "Fast Randomized Kernel Methods With Statistical Guarantees"

37 / 37 papers shown
Title
Chameleon: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning
Chameleon: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning
Wanyun Xie
F. Tonin
Volkan Cevher
32
0
0
30 May 2025
Supervised Kernel Thinning
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
177
0
0
17 Oct 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
121
2
0
09 May 2024
Mean Parity Fair Regression in RKHS
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
48
3
0
21 Feb 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and
  Related Spectral Analyses
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
45
1
0
17 Jan 2023
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
88
19
0
08 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
Nearly Optimal Algorithms for Level Set Estimation
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin Jamieson
Robert D. Nowak
Lalit P. Jain
77
23
0
02 Nov 2021
Knowledge-Adaptation Priors
Knowledge-Adaptation Priors
Mohammad Emtiyaz Khan
S. Swaroop
BDLVLMODL
53
27
0
16 Jun 2021
High-Dimensional Experimental Design and Kernel Bandits
High-Dimensional Experimental Design and Kernel Bandits
Romain Camilleri
Julian Katz-Samuels
Kevin Jamieson
83
57
0
12 May 2021
Near-linear Time Gaussian Process Optimization with Adaptive Batching
  and Resparsification
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
81
19
0
23 Feb 2020
Convergence Guarantees for Gaussian Process Means With Misspecified
  Likelihoods and Smoothness
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
85
56
0
29 Jan 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
82
1
0
11 Dec 2019
Exact expressions for double descent and implicit regularization via
  surrogate random design
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
82
78
0
10 Dec 2019
Statistical and Computational Trade-Offs in Kernel K-Means
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello
Lorenzo Rosasco
51
32
0
27 Aug 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
  $k$-means Clustering
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel kkk-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
60
7
0
15 May 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
55
20
0
22 Feb 2019
Kernel Conjugate Gradient Methods with Random Projections
Kernel Conjugate Gradient Methods with Random Projections
Bailey Kacsmar
Douglas R Stinson
54
4
0
05 Nov 2018
On Fast Leverage Score Sampling and Optimal Learning
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
83
82
0
31 Oct 2018
Data-dependent compression of random features for large-scale kernel
  approximation
Data-dependent compression of random features for large-scale kernel approximation
Raj Agrawal
Trevor Campbell
Jonathan H. Huggins
Tamara Broderick
48
20
0
09 Oct 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
89
15
0
26 Jun 2018
A Study of Clustering Techniques and Hierarchical Matrix Formats for
  Kernel Ridge Regression
A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression
E. Rebrova
Gustavo Chavez
Yang Liu
P. Ghysels
Xin Li
55
22
0
27 Mar 2018
Distributed Adaptive Sampling for Kernel Matrix Approximation
Distributed Adaptive Sampling for Kernel Matrix Approximation
Daniele Calandriello
A. Lazaric
Michal Valko
130
24
0
27 Mar 2018
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Daniele Calandriello
A. Lazaric
Michal Valko
72
40
0
15 Jun 2017
Randomized Clustered Nystrom for Large-Scale Kernel Machines
Randomized Clustered Nystrom for Large-Scale Kernel Machines
Farhad Pourkamali Anaraki
Stephen Becker
80
33
0
20 Dec 2016
Sharper Bounds for Regularized Data Fitting
Sharper Bounds for Regularized Data Fitting
H. Avron
K. Clarkson
David P. Woodruff
85
58
0
10 Nov 2016
Fast DPP Sampling for Nyström with Application to Kernel Methods
Fast DPP Sampling for Nyström with Application to Kernel Methods
Chengtao Li
Stefanie Jegelka
S. Sra
87
76
0
19 Mar 2016
Large Scale Kernel Learning using Block Coordinate Descent
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
80
43
0
17 Feb 2016
Generalization Properties of Learning with Random Features
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
102
331
0
14 Feb 2016
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score
  Sampling
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling
Michael B. Cohen
Cameron Musco
Christopher Musco
83
144
0
23 Nov 2015
NYTRO: When Subsampling Meets Early Stopping
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
92
32
0
19 Oct 2015
Less is More: Nyström Computational Regularization
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
97
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
108
130
0
06 Jun 2015
Randomized sketches for kernels: Fast and optimal non-parametric
  regression
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
103
174
0
25 Jan 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
97
166
0
29 Dec 2014
The Statistics of Streaming Sparse Regression
The Statistics of Streaming Sparse Regression
Jacob Steinhardt
Stefan Wager
Percy Liang
266
10
0
13 Dec 2014
On the Complexity of Learning with Kernels
On the Complexity of Learning with Kernels
Nicolò Cesa-Bianchi
Yishay Mansour
Ohad Shamir
94
38
0
05 Nov 2014
1