Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.0306
Cited By
v1
v2
v3 (latest)
Fast Randomized Kernel Methods With Statistical Guarantees
2 November 2014
A. Alaoui
Michael W. Mahoney
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast Randomized Kernel Methods With Statistical Guarantees"
37 / 37 papers shown
Title
Chameleon: A Flexible Data-mixing Framework for Language Model Pretraining and Finetuning
Wanyun Xie
F. Tonin
Volkan Cevher
32
0
0
30 May 2025
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
177
0
0
17 Oct 2024
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
121
2
0
09 May 2024
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
48
3
0
21 Feb 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
45
1
0
17 Jan 2023
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
88
19
0
08 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
61
13
0
17 Jan 2022
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin Jamieson
Robert D. Nowak
Lalit P. Jain
77
23
0
02 Nov 2021
Knowledge-Adaptation Priors
Mohammad Emtiyaz Khan
S. Swaroop
BDL
VLM
ODL
53
27
0
16 Jun 2021
High-Dimensional Experimental Design and Kernel Bandits
Romain Camilleri
Julian Katz-Samuels
Kevin Jamieson
83
57
0
12 May 2021
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
81
19
0
23 Feb 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
85
56
0
29 Jan 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
82
1
0
11 Dec 2019
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
82
78
0
10 Dec 2019
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello
Lorenzo Rosasco
51
32
0
27 Aug 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
k
k
k
-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
60
7
0
15 May 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
55
20
0
22 Feb 2019
Kernel Conjugate Gradient Methods with Random Projections
Bailey Kacsmar
Douglas R Stinson
54
4
0
05 Nov 2018
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
83
82
0
31 Oct 2018
Data-dependent compression of random features for large-scale kernel approximation
Raj Agrawal
Trevor Campbell
Jonathan H. Huggins
Tamara Broderick
48
20
0
09 Oct 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
89
15
0
26 Jun 2018
A Study of Clustering Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression
E. Rebrova
Gustavo Chavez
Yang Liu
P. Ghysels
Xin Li
55
22
0
27 Mar 2018
Distributed Adaptive Sampling for Kernel Matrix Approximation
Daniele Calandriello
A. Lazaric
Michal Valko
130
24
0
27 Mar 2018
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Daniele Calandriello
A. Lazaric
Michal Valko
72
40
0
15 Jun 2017
Randomized Clustered Nystrom for Large-Scale Kernel Machines
Farhad Pourkamali Anaraki
Stephen Becker
80
33
0
20 Dec 2016
Sharper Bounds for Regularized Data Fitting
H. Avron
K. Clarkson
David P. Woodruff
85
58
0
10 Nov 2016
Fast DPP Sampling for Nyström with Application to Kernel Methods
Chengtao Li
Stefanie Jegelka
S. Sra
87
76
0
19 Mar 2016
Large Scale Kernel Learning using Block Coordinate Descent
Stephen Tu
Rebecca Roelofs
Shivaram Venkataraman
Benjamin Recht
80
43
0
17 Feb 2016
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
102
331
0
14 Feb 2016
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling
Michael B. Cohen
Cameron Musco
Christopher Musco
83
144
0
23 Nov 2015
NYTRO: When Subsampling Meets Early Stopping
Tomás Angles
Raffaello Camoriano
Alessandro Rudi
Lorenzo Rosasco
92
32
0
19 Oct 2015
Less is More: Nyström Computational Regularization
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
97
277
0
16 Jul 2015
Optimal Rates for Random Fourier Features
Bharath K. Sriperumbudur
Z. Szabó
108
130
0
06 Jun 2015
Randomized sketches for kernels: Fast and optimal non-parametric regression
Yun Yang
Mert Pilanci
Martin J. Wainwright
103
174
0
25 Jan 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
97
166
0
29 Dec 2014
The Statistics of Streaming Sparse Regression
Jacob Steinhardt
Stefan Wager
Percy Liang
266
10
0
13 Dec 2014
On the Complexity of Learning with Kernels
Nicolò Cesa-Bianchi
Yishay Mansour
Ohad Shamir
94
38
0
05 Nov 2014
1