Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.1897
Cited By
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
5 December 2014
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images"
50 / 1,401 papers shown
Title
A Novel Biologically Mechanism-Based Visual Cognition Model--Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity
Peijie Yin
Hong Qiao
Wei Wu
Lu Qi
Yinlin Li
Shanlin Zhong
Bo-Wen Zhang
11
8
0
25 Mar 2016
Harnessing Deep Neural Networks with Logic Rules
Zhiting Hu
Xuezhe Ma
Zhengzhong Liu
Eduard H. Hovy
Eric Xing
AI4CE
NAI
18
610
0
21 Mar 2016
A Survey of Stealth Malware: Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions
Ethan M. Rudd
Andras Rozsa
Manuel Günther
Terrance E. Boult
20
154
0
19 Mar 2016
Suppressing the Unusual: towards Robust CNNs using Symmetric Activation Functions
Qiyang Zhao
Lewis D. Griffin
AAML
6
28
0
16 Mar 2016
Turing learning: a metric-free approach to inferring behavior and its application to swarms
Wei Li
Melvin Gauci
R. Groß
16
55
0
15 Mar 2016
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
Anh Totti Nguyen
J. Yosinski
Jeff Clune
28
324
0
11 Feb 2016
The Role of Typicality in Object Classification: Improving The Generalization Capacity of Convolutional Neural Networks
Babak Saleh
Ahmed Elgammal
J. Feldman
19
16
0
09 Feb 2016
Graying the black box: Understanding DQNs
Tom Zahavy
Nir Ben-Zrihem
Shie Mannor
13
262
0
08 Feb 2016
Unifying Adversarial Training Algorithms with Flexible Deep Data Gradient Regularization
Alexander Ororbia
C. Lee Giles
Daniel Kifer
OOD
16
24
0
26 Jan 2016
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Suraj Srinivas
Ravi Kiran Sarvadevabhatla
Konda Reddy Mopuri
N. Prabhu
S. Kruthiventi
R. Venkatesh Babu
OOD
35
215
0
25 Jan 2016
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
11
531
0
07 Dec 2015
Thinking Required
K. Rocki
AI4CE
28
0
0
07 Dec 2015
Predicting and visualizing psychological attributions with a deep neural network
Edward Grant
Stephan Sahm
M. Zabihi
Marcel van Gerven
FAtt
CVBM
12
2
0
04 Dec 2015
Loss Functions for Neural Networks for Image Processing
Hang Zhao
Orazio Gallo
I. Frosio
Jan Kautz
SupR
14
277
0
28 Nov 2015
Convergent Learning: Do different neural networks learn the same representations?
Yixuan Li
J. Yosinski
Jeff Clune
Hod Lipson
J. Hopcroft
SSL
48
355
0
24 Nov 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
19
3,934
0
24 Nov 2015
What Happened to My Dog in That Network: Unraveling Top-down Generators in Convolutional Neural Networks
Patrick W. Gallagher
Shuai Tang
Zhuowen Tu
10
5
0
23 Nov 2015
Auxiliary Image Regularization for Deep CNNs with Noisy Labels
S. Azadi
Jiashi Feng
Stefanie Jegelka
Trevor Darrell
NoLa
19
89
0
22 Nov 2015
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
43
27
0
20 Nov 2015
Deep Manifold Traversal: Changing Labels with Convolutional Features
Jacob R. Gardner
P. Upchurch
Matt J. Kusner
Yixuan Li
Kilian Q. Weinberger
Kavita Bala
J. Hopcroft
34
65
0
19 Nov 2015
A Unified Gradient Regularization Family for Adversarial Examples
Chunchuan Lyu
Kaizhu Huang
Hai-Ning Liang
AAML
13
207
0
19 Nov 2015
Manifold Regularized Deep Neural Networks using Adversarial Examples
Taehoon Lee
Minsuk Choi
Sungroh Yoon
AAML
GAN
OOD
21
14
0
19 Nov 2015
Robust Convolutional Neural Networks under Adversarial Noise
Jonghoon Jin
Aysegül Dündar
Eugenio Culurciello
29
77
0
19 Nov 2015
Foveation-based Mechanisms Alleviate Adversarial Examples
Yan Luo
Xavier Boix
Gemma Roig
T. Poggio
Qi Zhao
AAML
21
170
0
19 Nov 2015
Towards Open Set Deep Networks
Abhijit Bendale
Terrance Boult
BDL
EDL
17
1,400
0
19 Nov 2015
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
Uri Shaham
Yutaro Yamada
S. Negahban
AAML
27
74
0
17 Nov 2015
Adversarial Manipulation of Deep Representations
S. Sabour
Yanshuai Cao
Fartash Faghri
David J. Fleet
GAN
AAML
30
286
0
16 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
40
4,852
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
20
3,051
0
14 Nov 2015
Analyzing Stability of Convolutional Neural Networks in the Frequency Domain
E. J. Heravi
H. H. Aghdam
D. Puig
FAtt
8
3
0
10 Nov 2015
Visual Language Modeling on CNN Image Representations
Hiroharu Kato
Tatsuya Harada
FAtt
25
7
0
09 Nov 2015
Confusing Deep Convolution Networks by Relabelling
Leigh Robinson
Benjamin Graham
16
3
0
23 Oct 2015
Exploring the Space of Adversarial Images
Pedro Tabacof
Eduardo Valle
AAML
20
191
0
19 Oct 2015
A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas
Haohan Wang
Bhiksha Raj
AI4TS
27
34
0
16 Oct 2015
Improving Back-Propagation by Adding an Adversarial Gradient
Arild Nøkland
AAML
32
32
0
14 Oct 2015
Learning a Discriminative Model for the Perception of Realism in Composite Images
Jun-Yan Zhu
Philipp Krahenbuhl
Eli Shechtman
Alexei A. Efros
SSL
GAN
21
140
0
02 Oct 2015
Evasion and Hardening of Tree Ensemble Classifiers
Alex Kantchelian
J. D. Tygar
A. Joseph
AAML
20
206
0
25 Sep 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
74
1,180
0
21 Sep 2015
The SP theory of intelligence: distinctive features and advantages
J. G. Wolff
27
31
0
17 Aug 2015
Deep Learning and Music Adversaries
Corey Kereliuk
Bob L. T. Sturm
J. Larsen
AAML
16
136
0
16 Jul 2015
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
64
1,864
0
22 Jun 2015
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
Feng Yu
Ari Seff
Yinda Zhang
Shuran Song
Thomas Funkhouser
Jianxiong Xiao
20
2,309
0
10 Jun 2015
Reflection Invariance: an important consideration of image orientation
Craig Henderson
E. Izquierdo
14
2
0
08 Jun 2015
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILM
FAtt
32
701
0
02 Jun 2015
An Empirical Evaluation of Current Convolutional Architectures' Ability to Manage Nuisance Location and Scale Variability
Nikolaos Karianakis
Jingming Dong
Stefano Soatto
30
15
0
26 May 2015
Image Reconstruction from Bag-of-Visual-Words
Hiroharu Kato
Tatsuya Harada
65
84
0
19 May 2015
What Do Deep CNNs Learn About Objects?
Xingchao Peng
Baochen Sun
Karim Ali
Kate Saenko
3DPC
18
3
0
09 Apr 2015
Analysis of classifiers' robustness to adversarial perturbations
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
35
361
0
09 Feb 2015
Why does Deep Learning work? - A perspective from Group Theory
Arnab Paul
Suresh Venkatasubramanian
37
21
0
20 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
36
18,808
0
20 Dec 2014
Previous
1
2
3
...
27
28
29
Next