ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.3730
  4. Cited By
Inconsistency of Bayesian Inference for Misspecified Linear Models, and
  a Proposal for Repairing It
v1v2v3 (latest)

Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It

11 December 2014
Peter Grünwald
T. V. Ommen
ArXiv (abs)PDFHTML

Papers citing "Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It"

50 / 148 papers shown
Title
Robust Neural Posterior Estimation and Statistical Model Criticism
Robust Neural Posterior Estimation and Statistical Model Criticism
Daniel Ward
Patrick W Cannon
Mark Beaumont
Matteo Fasiolo
Sebastian M. Schmon
90
39
0
12 Oct 2022
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio
  Estimation
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Arnaud Delaunoy
Joeri Hermans
François Rozet
Antoine Wehenkel
Gilles Louppe
83
34
0
29 Aug 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
57
7
0
09 Aug 2022
Tuning Stochastic Gradient Algorithms for Statistical Inference via
  Large-Sample Asymptotics
Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
Jeffrey Negrea
Jun Yang
Haoyue Feng
Daniel M. Roy
Jonathan H. Huggins
63
1
0
25 Jul 2022
The Importance Markov Chain
The Importance Markov Chain
Charly Andral
Randal Douc
Hugo Marival
Christian P. Robert
76
5
0
17 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a
  theoretical and empirical study
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
52
6
0
08 Jul 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
89
5
0
22 Jun 2022
Optimal quasi-Bayesian reduced rank regression with incomplete response
Optimal quasi-Bayesian reduced rank regression with incomplete response
The Tien Mai
Pierre Alquier
102
2
0
17 Jun 2022
Deep Bootstrap for Bayesian Inference
Deep Bootstrap for Bayesian Inference
Lizhen Nie
Veronika Rockova
UQCVBDL
179
3
0
30 May 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDLAAML
125
9
0
27 May 2022
Bernstein - von Mises theorem and misspecified models: a review
Bernstein - von Mises theorem and misspecified models: a review
N. Bochkina
74
9
0
28 Apr 2022
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Chris U. Carmona
Geoff K. Nicholls
51
11
0
01 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDLUD
94
51
0
30 Mar 2022
Modularized Bayesian analyses and cutting feedback in likelihood-free
  inference
Modularized Bayesian analyses and cutting feedback in likelihood-free inference
Atlanta Chakraborty
David J. Nott
Christopher C. Drovandi
David T. Frazier
Scott A. Sisson
72
14
0
18 Mar 2022
Robust PAC$^m$: Training Ensemble Models Under Misspecification and
  Outliers
Robust PACm^mm: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
89
5
0
03 Mar 2022
Cutting feedback and modularized analyses in generalized Bayesian
  inference
Cutting feedback and modularized analyses in generalized Bayesian inference
David T. Frazier
David J. Nott
92
7
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
82
45
0
09 Feb 2022
The no-free-lunch theorems of supervised learning
The no-free-lunch theorems of supervised learning
T. Sterkenburg
Peter Grünwald
FedML
78
59
0
09 Feb 2022
Detecting Model Misspecification in Amortized Bayesian Inference with
  Neural Networks
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
104
39
0
16 Dec 2021
Uncertainty estimation under model misspecification in neural network
  regression
Uncertainty estimation under model misspecification in neural network regression
Maria R. Cervera
Rafael Dätwyler
Francesco DÁngelo
Hamza Keurti
Benjamin Grewe
Christian Henning
64
6
0
23 Nov 2021
Posterior concentration and fast convergence rates for generalized
  Bayesian learning
Posterior concentration and fast convergence rates for generalized Bayesian learning
L. Ho
Binh T. Nguyen
Vu C. Dinh
D. M. Nguyen
58
5
0
19 Nov 2021
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
193
206
0
21 Oct 2021
Asymptotics of cut distributions and robust modular inference using
  Posterior Bootstrap
Asymptotics of cut distributions and robust modular inference using Posterior Bootstrap
E. Pompe
Pierre E. Jacob
80
14
0
21 Oct 2021
Gibbs posterior inference on a Levy density under discrete sampling
Gibbs posterior inference on a Levy density under discrete sampling
Zhe Wang
Ryan Martin
80
4
0
14 Sep 2021
Laplace and Saddlepoint Approximations in High Dimensions
Laplace and Saddlepoint Approximations in High Dimensions
Yanbo Tang
Nancy Reid
63
7
0
22 Jul 2021
Calibrating generalized predictive distributions
Calibrating generalized predictive distributions
Pei-Shien Wu
Ryan Martin
100
8
0
04 Jul 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
84
26
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
92
41
0
10 Jun 2021
An efficient adaptive MCMC algorithm for Pseudo-Bayesian quantum
  tomography
An efficient adaptive MCMC algorithm for Pseudo-Bayesian quantum tomography
The Tien Mai
34
1
0
01 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
134
0
14 May 2021
On the Robustness to Misspecification of $α$-Posteriors and Their
  Variational Approximations
On the Robustness to Misspecification of ααα-Posteriors and Their Variational Approximations
Marco Avella-Medina
J. M. Olea
Cynthia Rush
Amilcar Velez
75
19
0
16 Apr 2021
PAC-Bayesian Matrix Completion with a Spectral Scaled Student Prior
PAC-Bayesian Matrix Completion with a Spectral Scaled Student Prior
The Tien Mai
60
2
0
16 Apr 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
80
80
0
15 Apr 2021
Synthetic Likelihood in Misspecified Models: Consequences and
  Corrections
Synthetic Likelihood in Misspecified Models: Consequences and Corrections
David T. Frazier
Christopher C. Drovandi
David J. Nott
73
10
0
08 Apr 2021
Introducing prior information in Weighted Likelihood Bootstrap with
  applications to model misspecification
Introducing prior information in Weighted Likelihood Bootstrap with applications to model misspecification
E. Pompe
117
9
0
26 Mar 2021
Active multi-fidelity Bayesian online changepoint detection
Active multi-fidelity Bayesian online changepoint detection
Gregory W. Gundersen
Diana Cai
Chuteng Zhou
Barbara E. Engelhardt
Ryan P. Adams
56
10
0
26 Mar 2021
The Shape of Learning Curves: a Review
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
80
135
0
19 Mar 2021
Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments
  Latent Variable Estimation
Comparing the Value of Labeled and Unlabeled Data in Method-of-Moments Latent Variable Estimation
Mayee F. Chen
Benjamin Cohen-Wang
Stephen Mussmann
Frederic Sala
Christopher Ré
91
10
0
03 Mar 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PERUQLMUQCVUD
317
94
0
16 Feb 2021
A comparison of learning rate selection methods in generalized Bayesian
  inference
A comparison of learning rate selection methods in generalized Bayesian inference
Pei-Shien Wu
Ryan Martin
BDL
68
48
0
21 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
115
29
0
08 Dec 2020
Robustness on Networks
Robustness on Networks
Marios Papamichalis
Simón Lunagómez
P. Wolfe
25
0
0
05 Dec 2020
Foundations of Bayesian Learning from Synthetic Data
Foundations of Bayesian Learning from Synthetic Data
H. Wilde
Jack Jewson
Sebastian J. Vollmer
Chris Holmes
87
15
0
16 Nov 2020
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
  Distribution Uncertainty Estimation
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation
Aurick Zhou
Sergey Levine
BDLOODUQCV
48
13
0
05 Nov 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
130
16
0
19 Oct 2020
Probabilistic Machine Learning for Healthcare
Probabilistic Machine Learning for Healthcare
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
74
56
0
23 Sep 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCVBDL
90
70
0
13 Aug 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
134
68
0
23 Jul 2020
Optimal Bayesian estimation of Gaussian mixtures with growing number of
  components
Optimal Bayesian estimation of Gaussian mixtures with growing number of components
Ilsang Ohn
Lizhen Lin
67
18
0
17 Jul 2020
Finite mixture models do not reliably learn the number of components
Finite mixture models do not reliably learn the number of components
Diana Cai
Trevor Campbell
Tamara Broderick
66
23
0
08 Jul 2020
Previous
123
Next