ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.8293
  4. Cited By
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
v1v2 (latest)

Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels

29 December 2014
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
ArXiv (abs)PDFHTML

Papers citing "Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels"

50 / 82 papers shown
Title
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Yuanmin Huang
Zhen Huang
112
0
0
08 Mar 2025
Decentralized Online Ensembles of Gaussian Processes for Multi-Agent Systems
Fernando Llorente
Daniel Waxman
Petar M. Djurić
76
0
0
07 Feb 2025
Kernel Approximation using Analog In-Memory Computing
Kernel Approximation using Analog In-Memory Computing
Julian Büchel
Giacomo Camposampiero
A. Vasilopoulos
Corey Lammie
Manuel Le Gallo
Abbas Rahimi
Abu Sebastian
78
0
0
05 Nov 2024
Fast Summation of Radial Kernels via QMC Slicing
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
109
5
0
02 Oct 2024
On the design of scalable, high-precision spherical-radial Fourier
  features
On the design of scalable, high-precision spherical-radial Fourier features
Ayoub Belhadji
Qianyu Julie Zhu
Youssef Marzouk
71
1
0
23 Aug 2024
Variance-Reducing Couplings for Random Features: Perspectives from
  Optimal Transport
Variance-Reducing Couplings for Random Features: Perspectives from Optimal Transport
Isaac Reid
Stratis Markou
Krzysztof Choromanski
Richard E. Turner
Adrian Weller
54
1
0
26 May 2024
Spectraformer: A Unified Random Feature Framework for Transformer
Spectraformer: A Unified Random Feature Framework for Transformer
Duke Nguyen
Du Yin
Aditya Joshi
Flora D. Salim
67
1
0
24 May 2024
DiJiang: Efficient Large Language Models through Compact Kernelization
DiJiang: Efficient Large Language Models through Compact Kernelization
Hanting Chen
Zhicheng Liu
Xutao Wang
Yuchuan Tian
Yunhe Wang
VLM
92
5
0
29 Mar 2024
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process
  Regression
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression
Kevin Li
Max Balakirsky
Simon Mak
81
3
0
23 Oct 2023
Quasi-Monte Carlo Graph Random Features
Quasi-Monte Carlo Graph Random Features
Isaac Reid
K. Choromanski
Adrian Weller
72
10
0
21 May 2023
Taming graph kernels with random features
Taming graph kernels with random features
K. Choromanski
66
14
0
29 Apr 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of
  Positive Random Features
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
84
3
0
01 Feb 2023
Simplex Random Features
Simplex Random Features
Isaac Reid
K. Choromanski
Valerii Likhosherstov
Adrian Weller
73
7
0
31 Jan 2023
Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models
Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models
Luke Vilnis
Yury Zemlyanskiy
Patrick C. Murray
Alexandre Passos
Sumit Sanghai
105
10
0
18 Oct 2022
On The Relative Error of Random Fourier Features for Preserving Kernel
  Distance
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
95
1
0
01 Oct 2022
Quantum Adaptive Fourier Features for Neural Density Estimation
Quantum Adaptive Fourier Features for Neural Density Estimation
Joseph A. Gallego-Mejia
Fabio A. González
69
9
0
01 Aug 2022
Visual Attention Methods in Deep Learning: An In-Depth Survey
Visual Attention Methods in Deep Learning: An In-Depth Survey
Mohammed Hassanin
Saeed Anwar
Ibrahim Radwan
Fahad Shahbaz Khan
Ajmal Mian
136
166
0
16 Apr 2022
A Call for Clarity in Beam Search: How It Works and When It Stops
A Call for Clarity in Beam Search: How It Works and When It Stops
Jungo Kasai
Keisuke Sakaguchi
Ronan Le Bras
Dragomir R. Radev
Yejin Choi
Noah A. Smith
88
9
0
11 Apr 2022
HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
  Computation
HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party Computation
Wittawat Jitkrittum
Michal Lukasik
A. Suresh
Felix X. Yu
Gang Wang
18
0
0
28 Oct 2021
On Learning the Transformer Kernel
On Learning the Transformer Kernel
Sankalan Pal Chowdhury
Adamos Solomou
Kumar Avinava Dubey
Mrinmaya Sachan
ViT
131
14
0
15 Oct 2021
Hybrid Random Features
Hybrid Random Features
K. Choromanski
Haoxian Chen
Han Lin
Yuanzhe Ma
Arijit Sehanobish
...
Andy Zeng
Valerii Likhosherstov
Dmitry Kalashnikov
Vikas Sindhwani
Adrian Weller
82
21
0
08 Oct 2021
Exponential Error Convergence in Data Classification with Optimized
  Random Features: Acceleration by Quantum Machine Learning
Exponential Error Convergence in Data Classification with Optimized Random Features: Acceleration by Quantum Machine Learning
H. Yamasaki
Sho Sonoda
73
6
0
16 Jun 2021
Hermite Polynomial Features for Private Data Generation
Hermite Polynomial Features for Private Data Generation
Margarita Vinaroz
Mohammad-Amin Charusaie
Frederik Harder
Kamil Adamczewski
Mijung Park
97
25
0
09 Jun 2021
Learnable Fourier Features for Multi-Dimensional Spatial Positional
  Encoding
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding
Yang Li
Si Si
Gang Li
Cho-Jui Hsieh
Samy Bengio
87
96
0
05 Jun 2021
MetaKernel: Learning Variational Random Features with Limited Labels
MetaKernel: Learning Variational Random Features with Limited Labels
Yingjun Du
Haoliang Sun
Xiantong Zhen
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
VLMBDL
37
5
0
08 May 2021
Towards Unbiased Random Features with Lower Variance For Stationary
  Indefinite Kernels
Towards Unbiased Random Features with Lower Variance For Stationary Indefinite Kernels
Qin Luo
Kun Fang
Jie Yang
Xiaolin Huang
40
1
0
13 Apr 2021
Random Feature Attention
Random Feature Attention
Hao Peng
Nikolaos Pappas
Dani Yogatama
Roy Schwartz
Noah A. Smith
Lingpeng Kong
133
362
0
03 Mar 2021
Learning with Density Matrices and Random Features
Learning with Density Matrices and Random Features
Fabio A. González
Joseph A. Gallego-Mejia
Santiago Toledo-Cortés
Vladimir Vargas-Calderón
60
29
0
08 Feb 2021
Discrepancy Bounds for a Class of Negatively Dependent Random Points
  Including Latin Hypercube Samples
Discrepancy Bounds for a Class of Negatively Dependent Random Points Including Latin Hypercube Samples
M. Gnewuch
Nils Hebbinghaus
43
24
0
06 Feb 2021
Gauss-Legendre Features for Gaussian Process Regression
Gauss-Legendre Features for Gaussian Process Regression
Paz Fink Shustin
H. Avron
GP
59
11
0
04 Jan 2021
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
88
4
0
03 Nov 2020
Subgroup-based Rank-1 Lattice Quasi-Monte Carlo
Subgroup-based Rank-1 Lattice Quasi-Monte Carlo
Yueming Lyu
Yuan. Yuan
Ivor W. Tsang
55
4
0
29 Oct 2020
Low-dimensional Interpretable Kernels with Conic Discriminant Functions
  for Classification
Low-dimensional Interpretable Kernels with Conic Discriminant Functions for Classification
Gurhan Ceylan
¸S. ˙Ilker Birbil
FAtt
26
0
0
17 Jul 2020
Learning to Learn Kernels with Variational Random Features
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
Demystifying Orthogonal Monte Carlo and Beyond
Demystifying Orthogonal Monte Carlo and Beyond
Han Lin
Haoxian Chen
Tianyi Zhang
Clément Laroche
K. Choromanski
47
9
0
27 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
126
176
0
23 Apr 2020
Learning with Optimized Random Features: Exponential Speedup by Quantum
  Machine Learning without Sparsity and Low-Rank Assumptions
Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions
H. Yamasaki
Sathyawageeswar Subramanian
Sho Sonoda
M. Koashi
134
17
0
22 Apr 2020
Intrinsic Exploration as Multi-Objective RL
Intrinsic Exploration as Multi-Objective RL
Philippe Morere
F. Ramos
20
1
0
06 Apr 2020
Generalization Guarantees for Sparse Kernel Approximation with Entropic
  Optimal Features
Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding
Rui Tuo
Shahin Shahrampour
41
8
0
11 Feb 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
82
1
0
11 Dec 2019
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Fanghui Liu
Xiaolin Huang
Yudong Chen
Jie Yang
Johan A. K. Suykens
68
21
0
20 Nov 2019
ORCCA: Optimal Randomized Canonical Correlation Analysis
ORCCA: Optimal Randomized Canonical Correlation Analysis
Yinsong Wang
Shahin Shahrampour
103
5
0
11 Oct 2019
Automated Spectral Kernel Learning
Automated Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
71
14
0
11 Sep 2019
Learning Stabilizable Nonlinear Dynamics with Contraction-Based
  Regularization
Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
Sumeet Singh
Spencer M. Richards
Vikas Sindhwani
Jean-Jacques E. Slotine
Marco Pavone
92
76
0
29 Jul 2019
Sampled Softmax with Random Fourier Features
Sampled Softmax with Random Fourier Features
A. S. Rawat
Jiecao Chen
Felix X. Yu
A. Suresh
Sanjiv Kumar
93
55
0
24 Jul 2019
BayesSim: adaptive domain randomization via probabilistic inference for
  robotics simulators
BayesSim: adaptive domain randomization via probabilistic inference for robotics simulators
F. Ramos
Rafael Possas
Dieter Fox
60
158
0
04 Jun 2019
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point
  Patterns
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point Patterns
Raif M. Rustamov
James T. Klosowski
58
7
0
31 May 2019
Structured Monte Carlo Sampling for Nonisotropic Distributions via
  Determinantal Point Processes
Structured Monte Carlo Sampling for Nonisotropic Distributions via Determinantal Point Processes
K. Choromanski
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
69
3
0
29 May 2019
On Sampling Random Features From Empirical Leverage Scores:
  Implementation and Theoretical Guarantees
On Sampling Random Features From Empirical Leverage Scores: Implementation and Theoretical Guarantees
Shahin Shahrampour
Soheil Kolouri
51
10
0
20 Mar 2019
Low-Precision Random Fourier Features for Memory-Constrained Kernel
  Approximation
Low-Precision Random Fourier Features for Memory-Constrained Kernel Approximation
Jian Zhang
Avner May
Tri Dao
Christopher Ré
80
29
0
31 Oct 2018
12
Next