Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.8293
Cited By
v1
v2 (latest)
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
29 December 2014
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels"
50 / 82 papers shown
Title
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Yuanmin Huang
Zhen Huang
112
0
0
08 Mar 2025
Decentralized Online Ensembles of Gaussian Processes for Multi-Agent Systems
Fernando Llorente
Daniel Waxman
Petar M. Djurić
76
0
0
07 Feb 2025
Kernel Approximation using Analog In-Memory Computing
Julian Büchel
Giacomo Camposampiero
A. Vasilopoulos
Corey Lammie
Manuel Le Gallo
Abbas Rahimi
Abu Sebastian
78
0
0
05 Nov 2024
Fast Summation of Radial Kernels via QMC Slicing
Johannes Hertrich
Tim Jahn
Michael Quellmalz
109
5
0
02 Oct 2024
On the design of scalable, high-precision spherical-radial Fourier features
Ayoub Belhadji
Qianyu Julie Zhu
Youssef Marzouk
71
1
0
23 Aug 2024
Variance-Reducing Couplings for Random Features: Perspectives from Optimal Transport
Isaac Reid
Stratis Markou
Krzysztof Choromanski
Richard E. Turner
Adrian Weller
54
1
0
26 May 2024
Spectraformer: A Unified Random Feature Framework for Transformer
Duke Nguyen
Du Yin
Aditya Joshi
Flora D. Salim
67
1
0
24 May 2024
DiJiang: Efficient Large Language Models through Compact Kernelization
Hanting Chen
Zhicheng Liu
Xutao Wang
Yuchuan Tian
Yunhe Wang
VLM
92
5
0
29 Mar 2024
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression
Kevin Li
Max Balakirsky
Simon Mak
81
3
0
23 Oct 2023
Quasi-Monte Carlo Graph Random Features
Isaac Reid
K. Choromanski
Adrian Weller
72
10
0
21 May 2023
Taming graph kernels with random features
K. Choromanski
66
14
0
29 Apr 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
84
3
0
01 Feb 2023
Simplex Random Features
Isaac Reid
K. Choromanski
Valerii Likhosherstov
Adrian Weller
73
7
0
31 Jan 2023
Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models
Luke Vilnis
Yury Zemlyanskiy
Patrick C. Murray
Alexandre Passos
Sumit Sanghai
105
10
0
18 Oct 2022
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
95
1
0
01 Oct 2022
Quantum Adaptive Fourier Features for Neural Density Estimation
Joseph A. Gallego-Mejia
Fabio A. González
69
9
0
01 Aug 2022
Visual Attention Methods in Deep Learning: An In-Depth Survey
Mohammed Hassanin
Saeed Anwar
Ibrahim Radwan
Fahad Shahbaz Khan
Ajmal Mian
136
166
0
16 Apr 2022
A Call for Clarity in Beam Search: How It Works and When It Stops
Jungo Kasai
Keisuke Sakaguchi
Ronan Le Bras
Dragomir R. Radev
Yejin Choi
Noah A. Smith
88
9
0
11 Apr 2022
HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party Computation
Wittawat Jitkrittum
Michal Lukasik
A. Suresh
Felix X. Yu
Gang Wang
18
0
0
28 Oct 2021
On Learning the Transformer Kernel
Sankalan Pal Chowdhury
Adamos Solomou
Kumar Avinava Dubey
Mrinmaya Sachan
ViT
131
14
0
15 Oct 2021
Hybrid Random Features
K. Choromanski
Haoxian Chen
Han Lin
Yuanzhe Ma
Arijit Sehanobish
...
Andy Zeng
Valerii Likhosherstov
Dmitry Kalashnikov
Vikas Sindhwani
Adrian Weller
82
21
0
08 Oct 2021
Exponential Error Convergence in Data Classification with Optimized Random Features: Acceleration by Quantum Machine Learning
H. Yamasaki
Sho Sonoda
73
6
0
16 Jun 2021
Hermite Polynomial Features for Private Data Generation
Margarita Vinaroz
Mohammad-Amin Charusaie
Frederik Harder
Kamil Adamczewski
Mijung Park
97
25
0
09 Jun 2021
Learnable Fourier Features for Multi-Dimensional Spatial Positional Encoding
Yang Li
Si Si
Gang Li
Cho-Jui Hsieh
Samy Bengio
87
96
0
05 Jun 2021
MetaKernel: Learning Variational Random Features with Limited Labels
Yingjun Du
Haoliang Sun
Xiantong Zhen
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
VLM
BDL
37
5
0
08 May 2021
Towards Unbiased Random Features with Lower Variance For Stationary Indefinite Kernels
Qin Luo
Kun Fang
Jie Yang
Xiaolin Huang
40
1
0
13 Apr 2021
Random Feature Attention
Hao Peng
Nikolaos Pappas
Dani Yogatama
Roy Schwartz
Noah A. Smith
Lingpeng Kong
133
362
0
03 Mar 2021
Learning with Density Matrices and Random Features
Fabio A. González
Joseph A. Gallego-Mejia
Santiago Toledo-Cortés
Vladimir Vargas-Calderón
60
29
0
08 Feb 2021
Discrepancy Bounds for a Class of Negatively Dependent Random Points Including Latin Hypercube Samples
M. Gnewuch
Nils Hebbinghaus
43
24
0
06 Feb 2021
Gauss-Legendre Features for Gaussian Process Regression
Paz Fink Shustin
H. Avron
GP
59
11
0
04 Jan 2021
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
88
4
0
03 Nov 2020
Subgroup-based Rank-1 Lattice Quasi-Monte Carlo
Yueming Lyu
Yuan. Yuan
Ivor W. Tsang
55
4
0
29 Oct 2020
Low-dimensional Interpretable Kernels with Conic Discriminant Functions for Classification
Gurhan Ceylan
¸S. ˙Ilker Birbil
FAtt
26
0
0
17 Jul 2020
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
72
34
0
11 Jun 2020
Demystifying Orthogonal Monte Carlo and Beyond
Han Lin
Haoxian Chen
Tianyi Zhang
Clément Laroche
K. Choromanski
47
9
0
27 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
126
176
0
23 Apr 2020
Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions
H. Yamasaki
Sathyawageeswar Subramanian
Sho Sonoda
M. Koashi
134
17
0
22 Apr 2020
Intrinsic Exploration as Multi-Objective RL
Philippe Morere
F. Ramos
20
1
0
06 Apr 2020
Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding
Rui Tuo
Shahin Shahrampour
41
8
0
11 Feb 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
82
1
0
11 Dec 2019
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Fanghui Liu
Xiaolin Huang
Yudong Chen
Jie Yang
Johan A. K. Suykens
68
21
0
20 Nov 2019
ORCCA: Optimal Randomized Canonical Correlation Analysis
Yinsong Wang
Shahin Shahrampour
103
5
0
11 Oct 2019
Automated Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
71
14
0
11 Sep 2019
Learning Stabilizable Nonlinear Dynamics with Contraction-Based Regularization
Sumeet Singh
Spencer M. Richards
Vikas Sindhwani
Jean-Jacques E. Slotine
Marco Pavone
92
76
0
29 Jul 2019
Sampled Softmax with Random Fourier Features
A. S. Rawat
Jiecao Chen
Felix X. Yu
A. Suresh
Sanjiv Kumar
93
55
0
24 Jul 2019
BayesSim: adaptive domain randomization via probabilistic inference for robotics simulators
F. Ramos
Rafael Possas
Dieter Fox
60
158
0
04 Jun 2019
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point Patterns
Raif M. Rustamov
James T. Klosowski
58
7
0
31 May 2019
Structured Monte Carlo Sampling for Nonisotropic Distributions via Determinantal Point Processes
K. Choromanski
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
69
3
0
29 May 2019
On Sampling Random Features From Empirical Leverage Scores: Implementation and Theoretical Guarantees
Shahin Shahrampour
Soheil Kolouri
51
10
0
20 Mar 2019
Low-Precision Random Fourier Features for Memory-Constrained Kernel Approximation
Jian Zhang
Avner May
Tri Dao
Christopher Ré
80
29
0
31 Oct 2018
1
2
Next