Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
44 / 44 papers shown
Title
Unsupervised Invariant Risk Minimization
Yotam Norman
Ron Meir
OOD
49
0
0
18 May 2025
Partial Transportability for Domain Generalization
Kasra Jalaldoust
Alexis Bellot
Elias Bareinboim
OOD
97
5
0
30 Mar 2025
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
111
8
0
13 Mar 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
117
1
0
18 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
110
3
0
04 Feb 2025
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
119
0
0
29 Oct 2024
Systems with Switching Causal Relations: A Meta-Causal Perspective
Moritz Willig
Tim Nelson Tobiasch
Florian Peter Busch
Jonas Seng
Devendra Singh Dhami
Kristian Kersting
CML
81
0
0
16 Oct 2024
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
Charles Jones
Fabio De Sousa Ribeiro
Mélanie Roschewitz
Daniel Coelho De Castro
Ben Glocker
FaML
OOD
CML
193
2
0
05 Oct 2024
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
95
0
0
01 Jul 2024
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
61
2
0
30 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
68
0
0
24 May 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
188
2
0
07 May 2024
Invariant Subspace Decomposition
Margherita Lazzaretto
Jonas Peters
Niklas Pfister
52
0
0
15 Apr 2024
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
52
1
0
29 Jul 2023
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
92
8
0
18 Jul 2023
Invariant Causal Set Covering Machines
Thibaud Godon
Baptiste Bauvin
Pascal Germain
J. Corbeil
Alexandre Drouin
CML
39
0
0
07 Jun 2023
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
79
140
0
12 Mar 2020
Extended Conditional Independence and Applications in Causal Inference
Panayiota Constantinou
A. Dawid
CML
15
44
0
01 Dec 2015
Principal causal effect identification and surrogate endpoint evaluation by multiple trials
Zhichao Jiang
Peng Ding
Z. Geng
CML
28
29
0
21 Jul 2015
backShift: Learning causal cyclic graphs from unknown shift interventions
Dominik Rothenhäusler
C. Heinze
J. Peters
N. Meinshausen
OOD
51
72
0
08 Jun 2015
A direct method for estimating a causal ordering in a linear non-Gaussian acyclic model
Shohei Shimizu
Aapo Hyvarinen
Yoshinobu Kawahara
47
29
0
09 Aug 2014
"Building" exact confidence nets
Andrew R. Francis
M. Stehlík
H. Wynn
28
4
0
31 Jul 2014
Statistical Causality from a Decision-Theoretic Perspective
A. Philip Dawid
CML
48
72
0
09 May 2014
CAM: Causal additive models, high-dimensional order search and penalized regression
Peter Buhlmann
J. Peters
J. Ernest
CML
88
323
0
06 Oct 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
84
563
0
26 Sep 2013
Causal interpretation of stochastic differential equations
Alexander Sokol
N. Hansen
CML
96
50
0
31 Mar 2013
Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs
Alain Hauser
Peter Buhlmann
CML
47
95
0
13 Mar 2013
On asymptotically optimal confidence regions and tests for high-dimensional models
Sara van de Geer
Peter Buhlmann
Yaácov Ritov
Ruben Dezeure
152
1,130
0
03 Mar 2013
A Discovery Algorithm for Directed Cyclic Graphs
Thomas S. Richardson
CML
108
192
0
13 Feb 2013
An Algorithm for Finding Minimum d-Separating Sets in Belief Networks
Silvia Acid
L. M. D. Campos
CML
34
73
0
13 Feb 2013
Causal Discovery from Changes
Jin Tian
Judea Pearl
CML
76
165
0
10 Jan 2013
Counterfactual Reasoning and Learning Systems
Léon Bottou
J. Peters
J. Q. Candela
Denis Xavier Charles
D. M. Chickering
Elon Portugaly
Dipankar Ray
Patrice Y. Simard
Edward Snelson
CML
OffRL
178
781
0
11 Sep 2012
Parameter and Structure Learning in Nested Markov Models
I. Shpitser
Thomas S. Richardson
J. M. Robins
R. Evans
CML
60
22
0
20 Jul 2012
Testing equality of functions under monotonicity constraints
C. Durot
P. Groeneboom
H. P. Lopuhaa
45
22
0
09 Jul 2012
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
74
604
0
27 Jun 2012
A Characterization of Markov Equivalence Classes for Directed Acyclic Graphs with Latent Variables
Jiji Zhang
81
17
0
20 Jun 2012
Identifiability of Gaussian structural equation models with equal error variances
J. Peters
Peter Buhlmann
CML
161
336
0
11 May 2012
Counterfactual analyses with graphical models based on local independence
K. Røysland
CML
66
29
0
06 Jun 2011
Learning high-dimensional directed acyclic graphs with latent and selection variables
Diego Colombo
Marloes H. Maathuis
M. Kalisch
Thomas S. Richardson
CML
94
465
0
29 Apr 2011
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
Alain Hauser
Peter Buhlmann
CML
63
425
0
14 Apr 2011
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
74
503
0
13 Jan 2011
Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview
A. Dawid
Vanessa Didelez
118
108
0
17 Oct 2010
Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming
A. Belloni
Victor Chernozhukov
Lie Wang
109
672
0
28 Sep 2010
Identifiability of parameters in latent structure models with many observed variables
E. Allman
C. Matias
J. Rhodes
CML
118
532
0
29 Sep 2008
1