ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.02846
  4. Cited By
Probabilistic Line Searches for Stochastic Optimization

Probabilistic Line Searches for Stochastic Optimization

10 February 2015
Maren Mahsereci
Philipp Hennig
    ODL
ArXivPDFHTML

Papers citing "Probabilistic Line Searches for Stochastic Optimization"

32 / 32 papers shown
Title
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
46
0
0
30 Apr 2025
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Philip Kenneweg
Leonardo Galli
Tristan Kenneweg
Barbara Hammer
ODL
51
2
0
27 Mar 2024
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic
  Line Search
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search
Max McGuinness
ODL
22
0
0
06 Aug 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
Local Bayesian optimization via maximizing probability of descent
Local Bayesian optimization via maximizing probability of descent
Quan Nguyen
Kaiwen Wu
Jacob R. Gardner
Roman Garnett
25
23
0
21 Oct 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
58
2
0
07 Jul 2021
Large Scale Private Learning via Low-rank Reparametrization
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
29
101
0
17 Jun 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on
  the Fly
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin
Dinesh Manocha
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
37
18
0
22 May 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
46
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss
  for stochastic deep learning problems
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
38
0
0
02 Oct 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Adaptive Stochastic Optimization
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
19
29
0
18 Jan 2020
Empirical study towards understanding line search approximations for
  training neural networks
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
29
21
0
03 Sep 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
41
205
0
24 May 2019
DeepOBS: A Deep Learning Optimizer Benchmark Suite
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
38
71
0
13 Mar 2019
LOSSGRAD: automatic learning rate in gradient descent
LOSSGRAD: automatic learning rate in gradient descent
B. Wójcik
Lukasz Maziarka
Jacek Tabor
ODL
42
4
0
20 Feb 2019
A Modern Retrospective on Probabilistic Numerics
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
24
64
0
14 Jan 2019
A fast quasi-Newton-type method for large-scale stochastic optimisation
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
36
7
0
29 Sep 2018
Particle Filtering Methods for Stochastic Optimization with Application
  to Large-Scale Empirical Risk Minimization
Particle Filtering Methods for Stochastic Optimization with Application to Large-Scale Empirical Risk Minimization
Bin Liu
30
10
0
23 Jul 2018
The Incremental Proximal Method: A Probabilistic Perspective
The Incremental Proximal Method: A Probabilistic Perspective
Ömer Deniz Akyildiz
Victor Elvira
Joaquín Míguez
11
7
0
12 Jul 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
30
85
0
24 Mar 2018
Learning nonlinear state-space models using smooth particle-filter-based
  likelihood approximations
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
Andreas Svensson
Fredrik Lindsten
Thomas B. Schon
11
6
0
29 Nov 2017
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic
  Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles
Philipp Hennig
31
161
0
22 May 2017
Early Stopping without a Validation Set
Early Stopping without a Validation Set
Maren Mahsereci
Lukas Balles
Christoph Lassner
Philipp Hennig
26
87
0
28 Mar 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
27
164
0
13 Feb 2017
Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
An empirical analysis of the optimization of deep network loss surfaces
An empirical analysis of the optimization of deep network loss surfaces
Daniel Jiwoong Im
Michael Tao
K. Branson
ODL
35
62
0
13 Dec 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
26
25
0
23 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
47
710
0
02 Mar 2016
1