Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02846
Cited By
Probabilistic Line Searches for Stochastic Optimization
10 February 2015
Maren Mahsereci
Philipp Hennig
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Probabilistic Line Searches for Stochastic Optimization"
32 / 32 papers shown
Title
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
46
0
0
30 Apr 2025
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Philip Kenneweg
Leonardo Galli
Tristan Kenneweg
Barbara Hammer
ODL
51
2
0
27 Mar 2024
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search
Max McGuinness
ODL
22
0
0
06 Aug 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
Local Bayesian optimization via maximizing probability of descent
Quan Nguyen
Kaiwen Wu
Jacob R. Gardner
Roman Garnett
25
23
0
21 Oct 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
58
2
0
07 Jul 2021
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
29
101
0
17 Jun 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin
Dinesh Manocha
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
37
18
0
22 May 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
46
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
38
0
0
02 Oct 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
19
29
0
18 Jan 2020
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
29
21
0
03 Sep 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
41
205
0
24 May 2019
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
38
71
0
13 Mar 2019
LOSSGRAD: automatic learning rate in gradient descent
B. Wójcik
Lukasz Maziarka
Jacek Tabor
ODL
42
4
0
20 Feb 2019
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
24
64
0
14 Jan 2019
A fast quasi-Newton-type method for large-scale stochastic optimisation
A. Wills
Carl Jidling
Thomas B. Schon
ODL
36
7
0
29 Sep 2018
Particle Filtering Methods for Stochastic Optimization with Application to Large-Scale Empirical Risk Minimization
Bin Liu
30
10
0
23 Jul 2018
The Incremental Proximal Method: A Probabilistic Perspective
Ömer Deniz Akyildiz
Victor Elvira
Joaquín Míguez
11
7
0
12 Jul 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
30
85
0
24 Mar 2018
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations
Andreas Svensson
Fredrik Lindsten
Thomas B. Schon
11
6
0
29 Nov 2017
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles
Philipp Hennig
31
161
0
22 May 2017
Early Stopping without a Validation Set
Maren Mahsereci
Lukas Balles
Christoph Lassner
Philipp Hennig
26
87
0
28 Mar 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
27
164
0
13 Feb 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
An empirical analysis of the optimization of deep network loss surfaces
Daniel Jiwoong Im
Michael Tao
K. Branson
ODL
35
62
0
13 Dec 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
26
25
0
23 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
47
710
0
02 Mar 2016
1