ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03492
  4. Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning

Gradient-based Hyperparameter Optimization through Reversible Learning

11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
    DD
ArXivPDFHTML

Papers citing "Gradient-based Hyperparameter Optimization through Reversible Learning"

50 / 498 papers shown
Title
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Efficient Curvature-Aware Hypergradient Approximation for Bilevel Optimization
Youran Dong
Junfeng Yang
Wei-Ting Yao
Jin Zhang
239
0
0
04 May 2025
Scalable Meta-Learning via Mixed-Mode Differentiation
Scalable Meta-Learning via Mixed-Mode Differentiation
Iurii Kemaev
Dan A Calian
Luisa M Zintgraf
Gregory Farquhar
H. V. Hasselt
57
0
0
01 May 2025
Tuning Learning Rates with the Cumulative-Learning Constant
Tuning Learning Rates with the Cumulative-Learning Constant
Nathan Faraj
7
0
0
30 Apr 2025
MAGIC: Near-Optimal Data Attribution for Deep Learning
MAGIC: Near-Optimal Data Attribution for Deep Learning
Andrew Ilyas
Logan Engstrom
TDI
48
0
0
23 Apr 2025
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
Moncef Garouani
28
0
0
08 Apr 2025
Exploring the Potential of Bilevel Optimization for Calibrating Neural Networks
Exploring the Potential of Bilevel Optimization for Calibrating Neural Networks
Gabriele Sanguin
Arjun Pakrashi
Marco Viola
Francesco Rinaldi
60
0
0
17 Mar 2025
PRDP: Progressively Refined Differentiable Physics
PRDP: Progressively Refined Differentiable Physics
Kanishk Bhatia
Felix Koehler
Nils Thuerey
AI4CE
72
0
0
26 Feb 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
97
9
0
28 Jan 2025
Reinforcement Teaching
Reinforcement Teaching
Alex Lewandowski
Calarina Muslimani
Dale Schuurmans
Matthew E. Taylor
Jun Luo
87
1
0
28 Jan 2025
Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs
Multi-Objective Hyperparameter Selection via Hypothesis Testing on Reliability Graphs
Amirmohammad Farzaneh
Osvaldo Simeone
94
0
0
22 Jan 2025
On Penalty-based Bilevel Gradient Descent Method
On Penalty-based Bilevel Gradient Descent Method
Han Shen
Quan-Wu Xiao
Tianyi Chen
62
53
0
08 Jan 2025
Memory-Reduced Meta-Learning with Guaranteed Convergence
Memory-Reduced Meta-Learning with Guaranteed Convergence
Honglin Yang
Ji Ma
Xiao Yu
79
0
0
16 Dec 2024
A Learn-to-Optimize Approach for Coordinate-Wise Step Sizes for Quasi-Newton Methods
Wei Lin
Qingyu Song
Hong Xu
103
0
0
25 Nov 2024
Zero-Shot Coreset Selection: Efficient Pruning for Unlabeled Data
Zero-Shot Coreset Selection: Efficient Pruning for Unlabeled Data
Brent A. Griffin
Jacob Marks
Jason J. Corso
VLM
81
2
0
22 Nov 2024
Influence functions and regularity tangents for efficient active learning
Influence functions and regularity tangents for efficient active learning
Frederik Eaton
TDI
98
0
0
22 Nov 2024
Provably Faster Algorithms for Bilevel Optimization via
  Without-Replacement Sampling
Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling
Junyi Li
Heng Huang
39
1
0
07 Nov 2024
Reducing Hyperparameter Tuning Costs in ML, Vision and Language Model
  Training Pipelines via Memoization-Awareness
Reducing Hyperparameter Tuning Costs in ML, Vision and Language Model Training Pipelines via Memoization-Awareness
Abdelmajid Essofi
Ridwan Salahuddeen
Munachiso Nwadike
Elnura Zhalieva
Kun Zhang
Eric P. Xing
Willie Neiswanger
Qirong Ho
VLM
49
0
0
06 Nov 2024
Gradient Methods with Online Scaling
Gradient Methods with Online Scaling
Wenzhi Gao
Ya-Chi Chu
Yinyu Ye
Madeleine Udell
41
1
0
04 Nov 2024
Fully First-Order Methods for Decentralized Bilevel Optimization
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
42
0
0
25 Oct 2024
Synth4Seg -- Learning Defect Data Synthesis for Defect Segmentation
  using Bi-level Optimization
Synth4Seg -- Learning Defect Data Synthesis for Defect Segmentation using Bi-level Optimization
Shancong Mou
Raviteja Vemulapalli
Shiyu Li
Yuxuan Liu
C Thomas
...
Haoping Bai
Oncel Tuzel
Ping Huang
Jiulong Shan
Jianjun Shi
47
0
0
24 Oct 2024
Automatic Differentiation of Optimization Algorithms with Time-Varying
  Updates
Automatic Differentiation of Optimization Algorithms with Time-Varying Updates
Sheheryar Mehmood
Peter Ochs
31
1
0
21 Oct 2024
Optimizing importance weighting in the presence of sub-population shifts
Optimizing importance weighting in the presence of sub-population shifts
Floris Holstege
Bram Wouters
Noud van Giersbergen
C. Diks
36
0
0
18 Oct 2024
Towards Differentiable Multilevel Optimization: A Gradient-Based
  Approach
Towards Differentiable Multilevel Optimization: A Gradient-Based Approach
Yuntian Gu
Xuzheng Chen
23
0
0
15 Oct 2024
Differentially Private Bilevel Optimization
Differentially Private Bilevel Optimization
Guy Kornowski
216
0
0
29 Sep 2024
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
LM&MA
79
3
0
24 Sep 2024
Online Nonconvex Bilevel Optimization with Bregman Divergences
Online Nonconvex Bilevel Optimization with Bregman Divergences
Jason Bohne
David Rosenberg
Gary Kazantsev
Pawel Polak
40
0
0
16 Sep 2024
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
A New First-Order Meta-Learning Algorithm with Convergence Guarantees
El Mahdi Chayti
Martin Jaggi
38
1
0
05 Sep 2024
UDD: Dataset Distillation via Mining Underutilized Regions
UDD: Dataset Distillation via Mining Underutilized Regions
Shiguang Wang
Zhongyu Zhang
Jian Cheng
DD
38
0
0
29 Aug 2024
Flexora: Flexible Low Rank Adaptation for Large Language Models
Flexora: Flexible Low Rank Adaptation for Large Language Models
Chenxing Wei
Yao Shu
Ying Tiffany He
Fei Richard Yu
AI4CE
36
3
0
20 Aug 2024
Narrowing the Focus: Learned Optimizers for Pretrained Models
Narrowing the Focus: Learned Optimizers for Pretrained Models
Gus Kristiansen
Mark Sandler
A. Zhmoginov
Nolan Miller
Anirudh Goyal
Jihwan Lee
Max Vladymyrov
41
1
0
17 Aug 2024
Generative Dataset Distillation Based on Diffusion Model
Generative Dataset Distillation Based on Diffusion Model
Duo Su
Junjie Hou
Guang Li
Ren Togo
Rui Song
Takahiro Ogawa
Miki Haseyama
VGen
DD
43
4
0
16 Aug 2024
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Yu Sun
Xinhao Li
Karan Dalal
Jiarui Xu
Arjun Vikram
...
Xinlei Chen
Xiaolong Wang
Sanmi Koyejo
Tatsunori Hashimoto
Carlos Guestrin
75
93
0
05 Jul 2024
A Linear Programming Enhanced Genetic Algorithm for Hyperparameter
  Tuning in Machine Learning
A Linear Programming Enhanced Genetic Algorithm for Hyperparameter Tuning in Machine Learning
Ankur Sinha
Paritosh Pankaj
41
0
0
30 Jun 2024
ScaleBiO: Scalable Bilevel Optimization for LLM Data Reweighting
ScaleBiO: Scalable Bilevel Optimization for LLM Data Reweighting
Rui Pan
Jipeng Zhang
Xingyuan Pan
Renjie Pi
Xiaoyu Wang
Tong Zhang
60
5
0
28 Jun 2024
Improving Hyperparameter Optimization with Checkpointed Model Weights
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta
Jonathan Lorraine
Steve Masson
Ramanathan Arunachalam
Zaid Pervaiz Bhat
James Lucas
Arun George Zachariah
60
4
0
26 Jun 2024
Memory-Efficient Gradient Unrolling for Large-Scale Bi-level
  Optimization
Memory-Efficient Gradient Unrolling for Large-Scale Bi-level Optimization
Qianli Shen
Yezhen Wang
Zhouhao Yang
Xiang Li
Haonan Wang
Yang Zhang
Jonathan Scarlett
Zhanxing Zhu
Kenji Kawaguchi
AI4CE
76
4
0
20 Jun 2024
First-Order Methods for Linearly Constrained Bilevel Optimization
First-Order Methods for Linearly Constrained Bilevel Optimization
Guy Kornowski
Swati Padmanabhan
Kai Wang
Zhe Zhang
S. Sra
82
5
0
18 Jun 2024
A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with
  Coupled Constraints
A Primal-Dual-Assisted Penalty Approach to Bilevel Optimization with Coupled Constraints
Liuyuan Jiang
Quan-Wu Xiao
Victor M. Tenorio
Fernando Real-Rojas
Antonio G. Marques
Tianyi Chen
57
2
0
14 Jun 2024
Meta-Learning Neural Procedural Biases
Meta-Learning Neural Procedural Biases
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhan
54
1
0
12 Jun 2024
Beyond Trend Following: Deep Learning for Market Trend Prediction
Beyond Trend Following: Deep Learning for Market Trend Prediction
Fernando Berzal
Alberto Garcia
55
0
0
10 Jun 2024
Derivatives of Stochastic Gradient Descent
Derivatives of Stochastic Gradient Descent
F. Iutzeler
Edouard Pauwels
Samuel Vaiter
42
1
0
24 May 2024
Accelerated Fully First-Order Methods for Bilevel and Minimax
  Optimization
Accelerated Fully First-Order Methods for Bilevel and Minimax Optimization
Chris Junchi Li
59
0
0
01 May 2024
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
LancBiO: dynamic Lanczos-aided bilevel optimization via Krylov subspace
Bin Gao
Yan Yang
Ya-xiang Yuan
46
2
0
04 Apr 2024
DiLM: Distilling Dataset into Language Model for Text-level Dataset
  Distillation
DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
Aru Maekawa
Satoshi Kosugi
Kotaro Funakoshi
Manabu Okumura
DD
59
10
0
30 Mar 2024
Nonsmooth Implicit Differentiation: Deterministic and Stochastic
  Convergence Rates
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
49
1
0
18 Mar 2024
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based
  on Meta Learning
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
Ruiyi Zhang
Rushi Qiang
Sai Ashish Somayajula
Pengtao Xie
42
13
0
14 Mar 2024
One Category One Prompt: Dataset Distillation using Diffusion Models
One Category One Prompt: Dataset Distillation using Diffusion Models
Ali Abbasi
Ashkan Shahbazi
Hamed Pirsiavash
Soheil Kolouri
DiffM
DD
42
3
0
11 Mar 2024
Fast and Efficient Local Search for Genetic Programming Based Loss
  Function Learning
Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
51
2
0
01 Mar 2024
Principled Penalty-based Methods for Bilevel Reinforcement Learning and
  RLHF
Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF
Han Shen
Zhuoran Yang
Tianyi Chen
OffRL
45
14
0
10 Feb 2024
Glocal Hypergradient Estimation with Koopman Operator
Glocal Hypergradient Estimation with Koopman Operator
Ryuichiro Hataya
Yoshinobu Kawahara
44
2
0
05 Feb 2024
1234...8910
Next