ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03492
  4. Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning

Gradient-based Hyperparameter Optimization through Reversible Learning

11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
    DD
ArXivPDFHTML

Papers citing "Gradient-based Hyperparameter Optimization through Reversible Learning"

50 / 498 papers shown
Title
Constrained Bi-Level Optimization: Proximal Lagrangian Value function
  Approach and Hessian-free Algorithm
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
Wei-Ting Yao
Chengming Yu
Shangzhi Zeng
Jin Zhang
33
13
0
29 Jan 2024
Importance-Aware Adaptive Dataset Distillation
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
35
6
0
29 Jan 2024
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and
  Convergence Analysis
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Jie Hao
Xiaochuan Gong
Mingrui Liu
33
7
0
17 Jan 2024
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level
  Optimization
A First-Order Multi-Gradient Algorithm for Multi-Objective Bi-Level Optimization
Feiyang Ye
Baijiong Lin
Xiao-Qun Cao
Yu Zhang
Ivor Tsang
55
6
0
17 Jan 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
Branislav Kveton
V. Cevher
37
2
0
17 Jan 2024
Online Algorithmic Recourse by Collective Action
Online Algorithmic Recourse by Collective Action
Elliot Creager
Richard Zemel
23
4
0
29 Dec 2023
MIM4DD: Mutual Information Maximization for Dataset Distillation
MIM4DD: Mutual Information Maximization for Dataset Distillation
Yuzhang Shang
Zhihang Yuan
Yan Yan
DD
45
14
0
27 Dec 2023
Learning to Reweight for Graph Neural Network
Learning to Reweight for Graph Neural Network
Zhengyu Chen
Teng Xiao
Kun Kuang
Zheqi Lv
Min Zhang
Jinluan Yang
Chengqiang Lu
Hongxia Yang
Fei Wu
OOD
40
1
0
19 Dec 2023
Coupled Confusion Correction: Learning from Crowds with Sparse
  Annotations
Coupled Confusion Correction: Learning from Crowds with Sparse Annotations
Hansong Zhang
Shikun Li
Dan Zeng
Chenggang Yan
Shiming Ge
32
13
0
12 Dec 2023
Boosting the Cross-Architecture Generalization of Dataset Distillation
  through an Empirical Study
Boosting the Cross-Architecture Generalization of Dataset Distillation through an Empirical Study
Lirui Zhao
Yuxin Zhang
Rongrong Ji
Rongrong Ji
45
1
0
09 Dec 2023
Using Large Language Models for Hyperparameter Optimization
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
41
51
0
07 Dec 2023
Model-Based Reparameterization Policy Gradient Methods: Theory and
  Practical Algorithms
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms
Shenao Zhang
Boyi Liu
Zhaoran Wang
Tuo Zhao
40
2
0
30 Oct 2023
TorchDEQ: A Library for Deep Equilibrium Models
TorchDEQ: A Library for Deep Equilibrium Models
Zhengyang Geng
J. Zico Kolter
VLM
67
12
0
28 Oct 2023
Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
Zixin Ding
Si-An Chen
Ruoxi Jia
Yuxin Chen
48
1
0
25 Oct 2023
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Lin Wang
Wenqi Fan
Jiatong Li
Yao Ma
Qing Li
DD
44
27
0
17 Oct 2023
Farzi Data: Autoregressive Data Distillation
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
35
3
0
15 Oct 2023
Differential Evolution Algorithm based Hyper-Parameters Selection of
  Convolutional Neural Network for Speech Command Recognition
Differential Evolution Algorithm based Hyper-Parameters Selection of Convolutional Neural Network for Speech Command Recognition
Sandipan Dhar
Anuvab Sen
Aritra Bandyopadhyay
N. D. Jana
Arjun Ghosh
Zahra Sarayloo
21
0
0
13 Oct 2023
Making Scalable Meta Learning Practical
Making Scalable Meta Learning Practical
Sang Keun Choe
Sanket Vaibhav Mehta
Hwijeen Ahn
Willie Neiswanger
Pengtao Xie
Emma Strubell
Eric Xing
58
15
0
09 Oct 2023
FedHyper: A Universal and Robust Learning Rate Scheduler for Federated
  Learning with Hypergradient Descent
FedHyper: A Universal and Robust Learning Rate Scheduler for Federated Learning with Hypergradient Descent
Ziyao Wang
Jianyu Wang
Ang Li
FedML
37
2
0
04 Oct 2023
Online Sensitivity Optimization in Differentially Private Learning
Online Sensitivity Optimization in Differentially Private Learning
Filippo Galli
C. Palamidessi
Tommaso Cucinotta
30
1
0
02 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
34
76
0
01 Oct 2023
Hybrid Algorithm Selection and Hyperparameter Tuning on Distributed
  Machine Learning Resources: A Hierarchical Agent-based Approach
Hybrid Algorithm Selection and Hyperparameter Tuning on Distributed Machine Learning Resources: A Hierarchical Agent-based Approach
Ahmad Esmaeili
Julia Taylor Rayz
Eric T. Matson
32
0
0
12 Sep 2023
CoLA: Exploiting Compositional Structure for Automatic and Efficient
  Numerical Linear Algebra
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski
Marc Finzi
Geoff Pleiss
Andrew Gordon Wilson
20
7
0
06 Sep 2023
Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
  Selection in Short-Term Weather Forecasting
Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter Selection in Short-Term Weather Forecasting
Anuvab Sen
A. Mazumder
Dibyarup Dutta
Udayon Sen
Pathikrit Syam
Sandipan Dhar
TPM
25
5
0
05 Sep 2023
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization
M. D. Santis
Jordan Frécon
Francesco Rinaldi
Saverio Salzo
Martin Schmidt
Martin Schmidt
55
0
0
21 Aug 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
31
5
0
19 Aug 2023
INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
  Gradient Computations in Implicit Neural Representation Processing
INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order Gradient Computations in Implicit Neural Representation Processing
Stefan Abi-Karam
Rishov Sarkar
Dejia Xu
Zhiwen Fan
Zhangyang Wang
Cong Hao
19
4
0
11 Aug 2023
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Sen-Fon Lin
Daouda Sow
Kaiyi Ji
Yitao Liang
Ness B. Shroff
41
3
0
07 Aug 2023
HomOpt: A Homotopy-Based Hyperparameter Optimization Method
HomOpt: A Homotopy-Based Hyperparameter Optimization Method
Sophia J. Abraham
K. D. G. Maduranga
Jeffery Kinnison
Zachariah Carmichael
Jonathan D. Hauenstein
Walter J. Scheirer
31
1
0
07 Aug 2023
An Introduction to Bi-level Optimization: Foundations and Applications
  in Signal Processing and Machine Learning
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning
Yihua Zhang
Prashant Khanduri
Ioannis C. Tsaknakis
Yuguang Yao
Min-Fong Hong
Sijia Liu
AI4CE
49
26
0
01 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
35
2
0
01 Aug 2023
Automatic Data Augmentation Learning using Bilevel Optimization for
  Histopathological Images
Automatic Data Augmentation Learning using Bilevel Optimization for Histopathological Images
Saypraseuth Mounsaveng
I. Laradji
David Vázquez
M. Pedersoli
Ismail Ben Ayed
OOD
25
1
0
21 Jul 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully
  First-Order Oracles
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
J.N. Zhang
91
2
0
26 Jun 2023
Optimal Algorithms for Stochastic Bilevel Optimization under Relaxed
  Smoothness Conditions
Optimal Algorithms for Stochastic Bilevel Optimization under Relaxed Smoothness Conditions
Xuxing Chen
Tesi Xiao
Krishnakumar Balasubramanian
37
24
0
21 Jun 2023
Practical First-Order Bayesian Optimization Algorithms
Practical First-Order Bayesian Optimization Algorithms
Utkarsh Prakash
Aryan Chollera
Kushagra Khatwani
P. K. J.
Tejas Bodas
30
1
0
19 Jun 2023
AutoML in the Age of Large Language Models: Current Challenges, Future
  Opportunities and Risks
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Alexander Tornede
Difan Deng
Theresa Eimer
Joseph Giovanelli
Aditya Mohan
...
Sarah Segel
Daphne Theodorakopoulos
Tanja Tornede
Henning Wachsmuth
Marius Lindauer
41
23
0
13 Jun 2023
Stepsize Learning for Policy Gradient Methods in Contextual Markov
  Decision Processes
Stepsize Learning for Policy Gradient Methods in Contextual Markov Decision Processes
Luca Sabbioni
Francesco Corda
Marcello Restelli
29
0
0
13 Jun 2023
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
  Estimation for Latent Gaussian Models
Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood Estimation for Latent Gaussian Models
Alexander Lin
Bahareh Tolooshams
Yves Atchadé
Demba E. Ba
36
1
0
05 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional
  Backtracking
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark Schmidt
Nick Harvey
33
8
0
05 Jun 2023
A Generalized Alternating Method for Bilevel Learning under the
  Polyak-Łojasiewicz Condition
A Generalized Alternating Method for Bilevel Learning under the Polyak-Łojasiewicz Condition
Quan-Wu Xiao
Songtao Lu
Tianyi Chen
24
2
0
04 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
38
0
0
02 Jun 2023
Hyperparameter Learning under Data Poisoning: Analysis of the Influence
  of Regularization via Multiobjective Bilevel Optimization
Hyperparameter Learning under Data Poisoning: Analysis of the Influence of Regularization via Multiobjective Bilevel Optimization
Javier Carnerero-Cano
Luis Muñoz-González
P. Spencer
Emil C. Lupu
AAML
19
3
0
02 Jun 2023
SimFBO: Towards Simple, Flexible and Communication-efficient Federated
  Bilevel Learning
SimFBO: Towards Simple, Flexible and Communication-efficient Federated Bilevel Learning
Yifan Yang
Peiyao Xiao
Kaiyi Ji
FedML
32
14
0
30 May 2023
Sharpness-Aware Data Poisoning Attack
Sharpness-Aware Data Poisoning Attack
Pengfei He
Han Xu
Jie Ren
Yingqian Cui
Hui Liu
Charu C. Aggarwal
Jiliang Tang
AAML
47
7
0
24 May 2023
ChatGPT as your Personal Data Scientist
ChatGPT as your Personal Data Scientist
Md. Mahadi Hassan
Alex Knipper
Shubhra (Santu) Karmaker
LM&MA
LLMAG
AI4CE
55
18
0
23 May 2023
Effective Bilevel Optimization via Minimax Reformulation
Xiaoyu Wang
Rui Pan
Renjie Pi
Tong Zhang
42
1
0
22 May 2023
Materials Informatics: An Algorithmic Design Rule
Materials Informatics: An Algorithmic Design Rule
B. Bishnoi
19
0
0
05 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future
  Directions
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
67
26
0
03 May 2023
FedAVO: Improving Communication Efficiency in Federated Learning with
  African Vultures Optimizer
FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer
Md Zarif Hossain
Ahmed Imteaj
FedML
35
5
0
02 May 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with
  ES-Single
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
24
6
0
21 Apr 2023
Previous
12345...8910
Next