Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.03492
Cited By
Gradient-based Hyperparameter Optimization through Reversible Learning
11 February 2015
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient-based Hyperparameter Optimization through Reversible Learning"
50 / 498 papers shown
Title
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
27
203
0
16 Nov 2019
Meta Label Correction for Noisy Label Learning
Guoqing Zheng
Ahmed Hassan Awadallah
S. Dumais
NoLa
OffRL
27
178
0
10 Nov 2019
Penalty Method for Inversion-Free Deep Bilevel Optimization
Akshay Mehra
Jihun Hamm
24
46
0
08 Nov 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
45
404
0
06 Nov 2019
A Simple Dynamic Learning Rate Tuning Algorithm For Automated Training of DNNs
Koyel Mukherjee
Alind Khare
Ashish Verma
22
15
0
25 Oct 2019
MARTHE: Scheduling the Learning Rate Via Online Hypergradients
Michele Donini
Luca Franceschi
Massimiliano Pontil
Orchid Majumder
P. Frasconi
25
7
0
18 Oct 2019
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
31
8
0
18 Oct 2019
Meta-learning for fast classifier adaptation to new users of Signature Verification systems
L. G. Hafemann
R. Sabourin
Luiz Eduardo Soares de Oliveira
AAML
35
25
0
17 Oct 2019
Model-Agnostic Meta-Learning using Runge-Kutta Methods
Daniel Jiwoong Im
Yibo Jiang
Nakul Verma
27
4
0
16 Oct 2019
Meta-Learning Deep Energy-Based Memory Models
Sergey Bartunov
Jack W. Rae
Simon Osindero
Timothy Lillicrap
45
34
0
07 Oct 2019
Generalized Inner Loop Meta-Learning
Jaya Kumar Alageshan
Brandon Amos
A. Verma
Phu Mon Htut
Artem Molchanov
Franziska Meier
Douwe Kiela
Kyunghyun Cho
Soumith Chintala
AI4CE
39
159
0
03 Oct 2019
Auto-Sizing the Transformer Network: Improving Speed, Efficiency, and Performance for Low-Resource Machine Translation
Kenton W. Murray
Jeffery Kinnison
Toan Q. Nguyen
Walter J. Scheirer
David Chiang
17
21
0
01 Oct 2019
Gradient Descent: The Ultimate Optimizer
Kartik Chandra
Audrey Xie
Jonathan Ragan-Kelley
E. Meijer
ODL
30
0
0
29 Sep 2019
Understanding and Robustifying Differentiable Architecture Search
Arber Zela
T. Elsken
Tonmoy Saikia
Yassine Marrakchi
Thomas Brox
Frank Hutter
OOD
AAML
66
369
0
20 Sep 2019
Regularized deep learning with nonconvex penalties
Sujit Vettam
Majnu John
19
5
0
11 Sep 2019
Meta-Learning with Implicit Gradients
Aravind Rajeswaran
Chelsea Finn
Sham Kakade
Sergey Levine
51
844
0
10 Sep 2019
A Baseline for Few-Shot Image Classification
Guneet Singh Dhillon
Pratik Chaudhari
Avinash Ravichandran
Stefano Soatto
36
575
0
06 Sep 2019
Meta Learning with Relational Information for Short Sequences
Yujia Xie
Haoming Jiang
Feng Liu
T. Zhao
H. Zha
25
14
0
04 Sep 2019
Gradient Methods for Solving Stackelberg Games
Roi Naveiro
D. Insua
19
12
0
19 Aug 2019
On Defending Against Label Flipping Attacks on Malware Detection Systems
R. Taheri
R. Javidan
Mohammad Shojafar
Zahra Pooranian
A. Miri
Mauro Conti
AAML
21
88
0
13 Aug 2019
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
48
1,423
0
02 Aug 2019
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
OOD
BDL
UQCV
21
54
0
27 Jul 2019
Switchable Normalization for Learning-to-Normalize Deep Representation
Ping Luo
Ruimao Zhang
Jiamin Ren
Zhanglin Peng
Jingyu Li
30
73
0
22 Jul 2019
Automated Machine Learning in Practice: State of the Art and Recent Results
Lukas Tuggener
Mohammadreza Amirian
Katharina Rombach
Stefan Lörwald
Anastasia Varlet
Christian Westermann
Thilo Stadelmann
21
63
0
19 Jul 2019
Towards Understanding Generalization in Gradient-Based Meta-Learning
Simon Guiroy
Vikas Verma
C. Pal
15
21
0
16 Jul 2019
Learning to Generate Synthetic 3D Training Data through Hybrid Gradient
Dawei Yang
Jia Deng
3DH
19
5
0
29 Jun 2019
MLFriend: Interactive Prediction Task Recommendation for Event-Driven Time-Series Data
Lei Xu
Shubhra (Santu) Karmaker
K. Veeramachaneni
AI4TS
16
4
0
28 Jun 2019
Data Cleansing for Models Trained with SGD
Satoshi Hara
Atsushi Nitanda
Takanori Maehara
TDI
34
68
0
20 Jun 2019
Meta-Learning via Learned Loss
Sarah Bechtle
Artem Molchanov
Yevgen Chebotar
Edward Grefenstette
Ludovic Righetti
Gaurav Sukhatme
Franziska Meier
26
110
0
12 Jun 2019
Graduated Optimization of Black-Box Functions
Weijia Shao
C. Geißler
F. Sivrikaya
28
2
0
04 Jun 2019
Learning to solve the credit assignment problem
B. Lansdell
P. Prakash
Konrad Paul Kording
27
50
0
03 Jun 2019
Robustness of accelerated first-order algorithms for strongly convex optimization problems
Hesameddin Mohammadi
Meisam Razaviyayn
M. Jovanović
17
41
0
27 May 2019
AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
Jeff Clune
17
116
0
27 May 2019
Neuro-Optimization: Learning Objective Functions Using Neural Networks
Younghan Jeon
Minsik Lee
J. Choi
36
1
0
24 May 2019
Alpha MAML: Adaptive Model-Agnostic Meta-Learning
Harkirat Singh Behl
A. G. Baydin
Philip Torr
33
67
0
17 May 2019
Online Hyper-parameter Learning for Auto-Augmentation Strategy
Chen Lin
Minghao Guo
Chuming Li
Yuan Xin
Wei Wu
Dahua Lin
Wanli Ouyang
Junjie Yan
ODL
21
83
0
17 May 2019
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
17
21
0
16 May 2019
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Chen Huang
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Shi Sun
Carlos Guestrin
J. Susskind
29
75
0
15 May 2019
Task-Driven Data Verification via Gradient Descent
Siavash Golkar
Kyunghyun Cho
14
0
0
14 May 2019
Data-Efficient Mutual Information Neural Estimator
Xiaoyu Lin
Indranil Sur
Samuel A. Nastase
Ajay Divakaran
Uri Hasson
Mohamed R. Amer
DRL
11
20
0
08 May 2019
Differentiable Visual Computing
Tzu-Mao Li
26
15
0
27 Apr 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Forecasting in Big Data Environments: an Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)
Ali Habibnia
E. Maasoumi
21
6
0
25 Apr 2019
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
Chinmay Hegde
27
11
0
24 Apr 2019
Reliable Weakly Supervised Learning: Maximize Gain and Maintain Safeness
Lan-Zhe Guo
Yu-Feng Li
Ming Li
Jinfeng Yi
Bowen Zhou
Zhi-Hua Zhou
29
2
0
22 Apr 2019
Hierarchical Meta Learning
Yingtian Zou
Jiashi Feng
19
4
0
19 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
40
128
0
17 Apr 2019
Shakeout: A New Approach to Regularized Deep Neural Network Training
Guoliang Kang
Jun Yu Li
Dacheng Tao
26
59
0
13 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
24
23
0
10 Apr 2019
Meta-Learning with Differentiable Convex Optimization
Kwonjoon Lee
Subhransu Maji
Avinash Ravichandran
Stefano Soatto
31
1,264
0
07 Apr 2019
Previous
1
2
3
...
10
7
8
9
Next