Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.01874
Cited By
v1
v2
v3
v4 (latest)
Adaptive importance sampling for control and inference
7 May 2015
H. Kappen
Hans Christian Ruiz
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adaptive importance sampling for control and inference"
36 / 36 papers shown
Title
Trajectory Planning with Signal Temporal Logic Costs using Deterministic Path Integral Optimization
Patrick Halder
Hannes Homburger
Lothar Kiltz
Johannes Reuter
Matthias Althoff
64
1
0
03 Mar 2025
A Taxonomy of Loss Functions for Stochastic Optimal Control
Carles Domingo-Enrich
75
4
0
01 Oct 2024
Robust Pushing: Exploiting Quasi-static Belief Dynamics and Contact-informed Optimization
Julius Jankowski
Lara Brudermüller
Nick Hawes
Sylvain Calinon
84
3
0
03 Apr 2024
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
116
10
0
04 Dec 2023
Variational Inference for SDEs Driven by Fractional Noise
Rembert Daems
Manfred Opper
Guillaume Crevecoeur
Tolga Birdal
99
6
0
19 Oct 2023
Generalized Schrödinger Bridge Matching
Guan-Horng Liu
Y. Lipman
Maximilian Nickel
Brian Karrer
Evangelos A. Theodorou
Ricky T. Q. Chen
DiffM
94
19
0
03 Oct 2023
Recent Advances in Path Integral Control for Trajectory Optimization: An Overview in Theoretical and Algorithmic Perspectives
Muhammad Kazim
JunGee Hong
Min-Gyeom Kim
Kwang-Ki K. Kim
74
19
0
22 Sep 2023
Diffusion Schrödinger Bridges for Bayesian Computation
J. Heng
Valentin De Bortoli
Arnaud Doucet
DiffM
53
3
0
27 Aug 2023
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
67
91
0
27 Feb 2023
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes
Joe Watson
Jan Peters
88
16
0
07 Oct 2022
Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations
E. Gillman
Dominic C. Rose
J. P. Garrahan
AI4CE
59
4
0
28 Sep 2022
Stochastic Optimal Control for Collective Variable Free Sampling of Molecular Transition Paths
Lars Holdijk
Yuanqi Du
F. Hooft
P. Jaini
B. Ensing
Max Welling
58
29
0
27 Jun 2022
Variational Inference MPC using Normalizing Flows and Out-of-Distribution Projection
Thomas Power
Dmitry Berenson
86
32
0
10 May 2022
Probabilistic Control and Majorization of Optimal Control
Tom Lefebvre
38
2
0
06 May 2022
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
103
7
0
02 Jan 2022
Nonparametric inference of stochastic differential equations based on the relative entropy rate
Min Dai
Jinqiao Duan
Jianyu Hu
Xiangjun Wang
43
2
0
09 Dec 2021
Rare Events via Cross-Entropy Population Monte Carlo
Caleb Miller
J. Corcoran
M. Schneider
43
9
0
12 Oct 2021
On Unbiased Score Estimation for Partially Observed Diffusions
J. Heng
J. Houssineau
Ajay Jasra
70
11
0
11 May 2021
Reinforcement learning of rare diffusive dynamics
Avishek Das
Dominic C. Rose
J. P. Garrahan
David T. Limmer
109
28
0
10 May 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
93
78
0
15 Feb 2021
Distilling a Hierarchical Policy for Planning and Control via Representation and Reinforcement Learning
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
110
3
0
16 Nov 2020
Reinforcement Learning as Iterative and Amortised Inference
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
OffRL
52
3
0
13 Jun 2020
A reinforcement learning approach to rare trajectory sampling
Dominic C. Rose
Jamie F. Mair
J. P. Garrahan
76
52
0
26 May 2020
Adaptive Smoothing Path Integral Control
Dominik Thalmeier
H. Kappen
Simone Totaro
Vicencc Gómez
19
7
0
13 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
85
112
0
11 May 2020
Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
Jung-Su Ha
Danny Driess
Marc Toussaint
36
19
0
09 Mar 2020
Schrödinger Bridge Samplers
Espen Bernton
J. Heng
Arnaud Doucet
Pierre E. Jacob
70
25
0
31 Dec 2019
Deep Value Model Predictive Control
Farbod Farshidian
David Hoeller
Marco Hutter
58
45
0
08 Oct 2019
Evolutionary reinforcement learning of dynamical large deviations
S. Whitelam
Daniel A. Jacobson
Isaac Tamblyn
51
22
0
02 Sep 2019
Learning to Guide: Guidance Law Based on Deep Meta-learning and Model Predictive Path Integral Control
Chen Liang
Weihong Wang
Zhenghua Liu
Chao Lai
Benchun Zhou
49
29
0
15 Apr 2019
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
133
31
0
28 Mar 2019
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
81
27
0
05 Jul 2018
Controlled Sequential Monte Carlo
J. Heng
A. Bishop
George Deligiannidis
Arnaud Doucet
108
74
0
28 Aug 2017
Particle Smoothing for Hidden Diffusion Processes: Adaptive Path Integral Smoother
H. Ruiz
H. Kappen
157
37
0
01 May 2016
Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment
Jung-Su Ha
Soon-Seo Park
Han-Lim Choi
43
7
0
16 Mar 2016
A Topology-Guided Path Integral Approach for Stochastic Optimal Control
Jung-Su Ha
Han-Lim Choi
45
11
0
19 Oct 2015
1