ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.01874
  4. Cited By
Adaptive importance sampling for control and inference
v1v2v3v4 (latest)

Adaptive importance sampling for control and inference

7 May 2015
H. Kappen
Hans Christian Ruiz
ArXiv (abs)PDFHTML

Papers citing "Adaptive importance sampling for control and inference"

36 / 36 papers shown
Title
Trajectory Planning with Signal Temporal Logic Costs using Deterministic Path Integral Optimization
Patrick Halder
Hannes Homburger
Lothar Kiltz
Johannes Reuter
Matthias Althoff
64
1
0
03 Mar 2025
A Taxonomy of Loss Functions for Stochastic Optimal Control
A Taxonomy of Loss Functions for Stochastic Optimal Control
Carles Domingo-Enrich
75
4
0
01 Oct 2024
Robust Pushing: Exploiting Quasi-static Belief Dynamics and
  Contact-informed Optimization
Robust Pushing: Exploiting Quasi-static Belief Dynamics and Contact-informed Optimization
Julius Jankowski
Lara Brudermüller
Nick Hawes
Sylvain Calinon
84
3
0
03 Apr 2024
Stochastic Optimal Control Matching
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
116
10
0
04 Dec 2023
Variational Inference for SDEs Driven by Fractional Noise
Variational Inference for SDEs Driven by Fractional Noise
Rembert Daems
Manfred Opper
Guillaume Crevecoeur
Tolga Birdal
99
6
0
19 Oct 2023
Generalized Schrödinger Bridge Matching
Generalized Schrödinger Bridge Matching
Guan-Horng Liu
Y. Lipman
Maximilian Nickel
Brian Karrer
Evangelos A. Theodorou
Ricky T. Q. Chen
DiffM
94
19
0
03 Oct 2023
Recent Advances in Path Integral Control for Trajectory Optimization: An
  Overview in Theoretical and Algorithmic Perspectives
Recent Advances in Path Integral Control for Trajectory Optimization: An Overview in Theoretical and Algorithmic Perspectives
Muhammad Kazim
JunGee Hong
Min-Gyeom Kim
Kwang-Ki K. Kim
74
19
0
22 Sep 2023
Diffusion Schrödinger Bridges for Bayesian Computation
Diffusion Schrödinger Bridges for Bayesian Computation
J. Heng
Valentin De Bortoli
Arnaud Doucet
DiffM
53
3
0
27 Aug 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
67
91
0
27 Feb 2023
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
  Gaussian Processes
Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with Gaussian Processes
Joe Watson
Jan Peters
88
16
0
07 Oct 2022
Combining Reinforcement Learning and Tensor Networks, with an
  Application to Dynamical Large Deviations
Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations
E. Gillman
Dominic C. Rose
J. P. Garrahan
AI4CE
59
4
0
28 Sep 2022
Stochastic Optimal Control for Collective Variable Free Sampling of
  Molecular Transition Paths
Stochastic Optimal Control for Collective Variable Free Sampling of Molecular Transition Paths
Lars Holdijk
Yuanqi Du
F. Hooft
P. Jaini
B. Ensing
Max Welling
58
29
0
27 Jun 2022
Variational Inference MPC using Normalizing Flows and
  Out-of-Distribution Projection
Variational Inference MPC using Normalizing Flows and Out-of-Distribution Projection
Thomas Power
Dmitry Berenson
86
32
0
10 May 2022
Probabilistic Control and Majorization of Optimal Control
Probabilistic Control and Majorization of Optimal Control
Tom Lefebvre
38
2
0
06 May 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
103
7
0
02 Jan 2022
Nonparametric inference of stochastic differential equations based on
  the relative entropy rate
Nonparametric inference of stochastic differential equations based on the relative entropy rate
Min Dai
Jinqiao Duan
Jianyu Hu
Xiangjun Wang
43
2
0
09 Dec 2021
Rare Events via Cross-Entropy Population Monte Carlo
Rare Events via Cross-Entropy Population Monte Carlo
Caleb Miller
J. Corcoran
M. Schneider
43
9
0
12 Oct 2021
On Unbiased Score Estimation for Partially Observed Diffusions
On Unbiased Score Estimation for Partially Observed Diffusions
J. Heng
J. Houssineau
Ajay Jasra
70
11
0
11 May 2021
Reinforcement learning of rare diffusive dynamics
Reinforcement learning of rare diffusive dynamics
Avishek Das
Dominic C. Rose
J. P. Garrahan
David T. Limmer
109
28
0
10 May 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
93
78
0
15 Feb 2021
Distilling a Hierarchical Policy for Planning and Control via
  Representation and Reinforcement Learning
Distilling a Hierarchical Policy for Planning and Control via Representation and Reinforcement Learning
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
110
3
0
16 Nov 2020
Reinforcement Learning as Iterative and Amortised Inference
Reinforcement Learning as Iterative and Amortised Inference
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
OffRL
52
3
0
13 Jun 2020
A reinforcement learning approach to rare trajectory sampling
A reinforcement learning approach to rare trajectory sampling
Dominic C. Rose
Jamie F. Mair
J. P. Garrahan
76
52
0
26 May 2020
Adaptive Smoothing Path Integral Control
Adaptive Smoothing Path Integral Control
Dominik Thalmeier
H. Kappen
Simone Totaro
Vicencc Gómez
19
7
0
13 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural
  networks: perspectives from the theory of controlled diffusions and measures
  on path space
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
85
112
0
11 May 2020
Probabilistic Framework for Constrained Manipulations and Task and
  Motion Planning under Uncertainty
Probabilistic Framework for Constrained Manipulations and Task and Motion Planning under Uncertainty
Jung-Su Ha
Danny Driess
Marc Toussaint
36
19
0
09 Mar 2020
Schrödinger Bridge Samplers
Schrödinger Bridge Samplers
Espen Bernton
J. Heng
Arnaud Doucet
Pierre E. Jacob
70
25
0
31 Dec 2019
Deep Value Model Predictive Control
Deep Value Model Predictive Control
Farbod Farshidian
David Hoeller
Marco Hutter
58
45
0
08 Oct 2019
Evolutionary reinforcement learning of dynamical large deviations
Evolutionary reinforcement learning of dynamical large deviations
S. Whitelam
Daniel A. Jacobson
Isaac Tamblyn
51
22
0
02 Sep 2019
Learning to Guide: Guidance Law Based on Deep Meta-learning and Model
  Predictive Path Integral Control
Learning to Guide: Guidance Law Based on Deep Meta-learning and Model Predictive Path Integral Control
Chen Liang
Weihong Wang
Zhenghua Liu
Chao Lai
Benchun Zhou
49
29
0
15 Apr 2019
Convergence rates for optimised adaptive importance samplers
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
133
31
0
28 Mar 2019
Adaptive Path-Integral Autoencoder: Representation Learning and Planning
  for Dynamical Systems
Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems
Jung-Su Ha
Young-Jin Park
Hyeok-Joo Chae
Soon-Seo Park
Han-Lim Choi
BDL
81
27
0
05 Jul 2018
Controlled Sequential Monte Carlo
Controlled Sequential Monte Carlo
J. Heng
A. Bishop
George Deligiannidis
Arnaud Doucet
108
74
0
28 Aug 2017
Particle Smoothing for Hidden Diffusion Processes: Adaptive Path
  Integral Smoother
Particle Smoothing for Hidden Diffusion Processes: Adaptive Path Integral Smoother
H. Ruiz
H. Kappen
157
37
0
01 May 2016
Topology-Guided Path Integral Approach for Stochastic Optimal Control in
  Cluttered Environment
Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment
Jung-Su Ha
Soon-Seo Park
Han-Lim Choi
43
7
0
16 Mar 2016
A Topology-Guided Path Integral Approach for Stochastic Optimal Control
A Topology-Guided Path Integral Approach for Stochastic Optimal Control
Jung-Su Ha
Han-Lim Choi
45
11
0
19 Oct 2015
1