ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.02827
  4. Cited By
On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data

11 May 2015
Rémi Bardenet
Arnaud Doucet
Chris Holmes
ArXiv (abs)PDFHTML

Papers citing "On Markov chain Monte Carlo methods for tall data"

50 / 145 papers shown
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter EstimationEURASIP Journal on Advances in Signal Processing (EURASIP JASP), 2020
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
186
190
0
25 Jul 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
312
15
0
23 Jun 2021
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm
  via Langevin Monte Carlo within Gibbs
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within GibbsInternational Conference on Machine Learning (ICML), 2021
Vincent Plassier
Maxime Vono
Alain Durmus
Eric Moulines
258
18
0
11 Jun 2021
Densely connected normalizing flows
Densely connected normalizing flowsNeural Information Processing Systems (NeurIPS), 2021
Matej Grcić
Ivan Grubišić
Sinisa Segvic
TPM
331
64
0
08 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov ModelsElectronic Journal of Statistics (EJS), 2021
Chunlei Wang
Sanvesh Srivastava
223
10
0
30 May 2021
How To Train Your Program: a Probabilistic Programming Pattern for
  Bayesian Learning From Data
How To Train Your Program: a Probabilistic Programming Pattern for Bayesian Learning From Data
David Tolpin
182
0
0
08 May 2021
Approximate Bayesian inference from noisy likelihoods with Gaussian
  process emulated MCMC
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
323
6
0
08 Apr 2021
Spectral Subsampling MCMC for Stationary Multivariate Time Series with
  Applications to Vector ARTFIMA Processes
Spectral Subsampling MCMC for Stationary Multivariate Time Series with Applications to Vector ARTFIMA ProcessesEconometrics and Statistics (ES), 2021
M. Villani
M. Quiroz
Robert Kohn
R. Salomone
AI4TS
146
10
0
05 Apr 2021
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
  approach
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Karla Monterrubio-Gómez
S. Wade
149
2
0
04 Mar 2021
Divide-and-Conquer MCMC for Multivariate Binary Data
Divide-and-Conquer MCMC for Multivariate Binary Data
Suchit Mehrotra
H. Brantley
P. Onglao
Patricia Bata
R. Romero
Jacob Westman
L. Bangerter
A. Maity
145
2
0
17 Feb 2021
A Two Stage Adaptive Metropolis Algorithm
A Two Stage Adaptive Metropolis AlgorithmJournal of Statistical Computation and Simulation (JSCS), 2021
Anirban Mondal
Kai-Li Yin
A. Mandal
253
2
0
01 Jan 2021
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Andrea Bertazzi
J. Bierkens
266
13
0
27 Dec 2020
Approximate Cross-validated Mean Estimates for Bayesian Hierarchical
  Regression Models
Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression ModelsJournal of Computational And Graphical Statistics (JCGS), 2020
Amy Zhang
L. Bao
Changcheng Li
M. Daniels
195
2
0
29 Nov 2020
No Free Lunch for Approximate MCMC
No Free Lunch for Approximate MCMC
J. Johndrow
Natesh S. Pillai
Aaron Smith
191
18
0
23 Oct 2020
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Non-convex Learning via Replica Exchange Stochastic Gradient MCMCInternational Conference on Machine Learning (ICML), 2020
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
344
48
0
12 Aug 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning UsersIEEE Computational Intelligence Magazine (IEEE CIM), 2020
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OODBDLUQCV
558
785
0
14 Jul 2020
Model Fusion with Kullback--Leibler Divergence
Model Fusion with Kullback--Leibler DivergenceInternational Conference on Machine Learning (ICML), 2020
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedMLMoMe
230
39
0
13 Jul 2020
Asymptotically Optimal Exact Minibatch Metropolis-Hastings
Asymptotically Optimal Exact Minibatch Metropolis-Hastings
Ruqi Zhang
A. Feder Cooper
Christopher De Sa
218
24
0
20 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
280
16
0
08 Jun 2020
Machine Learning Econometrics: Bayesian algorithms and methods
Machine Learning Econometrics: Bayesian algorithms and methods
Dimitris Korobilis
Davide Pettenuzzo
75
2
0
23 Apr 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
346
19
0
14 Apr 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)Neural Information Processing Systems (NeurIPS), 2020
C. A. Naesseth
Fredrik Lindsten
David M. Blei
304
59
0
23 Mar 2020
NuZZ: numerical Zig-Zag sampling for general models
NuZZ: numerical Zig-Zag sampling for general modelsStatistics and computing (Stat. Comput.), 2020
Filippo Pagani
Augustin Chevallier
Samuel Power
T. House
S. Cotter
180
11
0
07 Mar 2020
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
  Non-uniform Subsampling of Gradients
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of GradientsDiscrete and Continuous Dynamical Systems. Series A (DCDS-A), 2020
Ruilin Li
Xin Wang
H. Zha
Molei Tao
187
4
0
20 Feb 2020
Extended Stochastic Gradient MCMC for Large-Scale Bayesian Variable
  Selection
Extended Stochastic Gradient MCMC for Large-Scale Bayesian Variable SelectionBiometrika (Biometrika), 2020
Qifan Song
Y. Sun
Mao Ye
F. Liang
BDL
145
19
0
07 Feb 2020
Parallelising MCMC via Random Forests
Parallelising MCMC via Random Forests
Changye Wu
Christian P. Robert
125
5
0
21 Nov 2019
An Algorithm for Distributed Bayesian Inference in Generalized Linear
  Models
An Algorithm for Distributed Bayesian Inference in Generalized Linear Models
N. Shyamalkumar
Sanvesh Srivastava
154
0
0
18 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Laplacian Smoothing Stochastic Gradient Markov Chain Monte CarloSIAM Journal on Scientific Computing (SISC), 2019
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
120
9
0
02 Nov 2019
Spectral Subsampling MCMC for Stationary Time Series
Spectral Subsampling MCMC for Stationary Time SeriesInternational Conference on Machine Learning (ICML), 2019
R. Salomone
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
AI4TS
255
14
0
30 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model ChoiceBayesian Analysis (BA), 2019
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
312
5
0
10 Oct 2019
Optimal unbiased estimators via convex hulls
Optimal unbiased estimators via convex hulls
N. Kahalé
175
3
0
06 Sep 2019
Mini-batch Metropolis-Hastings MCMC with Reversible SGLD Proposal
Mini-batch Metropolis-Hastings MCMC with Reversible SGLD Proposal
Tung-Yu Wu
Y. X. R. Wang
W. Wong
273
14
0
08 Aug 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte CarloJournal of the American Statistical Association (JASA), 2019
Christopher Nemeth
Paul Fearnhead
BDL
217
154
0
16 Jul 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and
  Training of Neural Nets
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDLAI4CE
169
13
0
26 Jun 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Sparse Variational Inference: Bayesian Coresets from ScratchNeural Information Processing Systems (NeurIPS), 2019
Trevor Campbell
Boyan Beronov
237
39
0
07 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational InferenceNeural Information Processing Systems (NeurIPS), 2019
Trevor Campbell
Xinglong Li
194
33
0
04 Jun 2019
Coresets for Estimating Means and Mean Square Error with Limited Greedy
  Samples
Coresets for Estimating Means and Mean Square Error with Limited Greedy Samples
Saeed Vahidian
Baharan Mirzasoleiman
A. Cloninger
163
0
0
03 Jun 2019
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large
  datasets
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large datasetsNeural Information Processing Systems (NeurIPS), 2019
Rui Luo
Qiang Zhang
Yaodong Yang
Jun Wang
BDL
243
3
0
29 May 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type SplittingJournal of machine learning research (JMLR), 2019
Maxime Vono
Daniel Paulin
Arnaud Doucet
558
39
0
23 May 2019
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data
  Approximations
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data ApproximationsInternational Conference on Machine Learning (ICML), 2019
Brian L. Trippe
Jonathan H. Huggins
Raj Agrawal
Tamara Broderick
BDL
151
9
0
17 May 2019
A deterministic and computable Bernstein-von Mises theorem
A deterministic and computable Bernstein-von Mises theorem
Guillaume P. Dehaene
239
15
0
04 Apr 2019
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
A. Hubin
G. Storvik
UQCVBDL
186
13
0
18 Mar 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the
  Posterior Bootstrap
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior BootstrapInternational Conference on Machine Learning (ICML), 2019
Edwin Fong
Simon Lyddon
Chris Holmes
350
42
0
08 Feb 2019
Differentially Private Markov Chain Monte Carlo
Differentially Private Markov Chain Monte CarloNeural Information Processing Systems (NeurIPS), 2019
Mikko A. Heikkilä
Hibiki Ito
O. Dikmen
Antti Honkela
175
30
0
29 Jan 2019
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large
  Datasets
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
R. Cornish
Paul Vanetti
Alexandre Bouchard-Côté
George Deligiannidis
Arnaud Doucet
246
21
0
28 Jan 2019
A Primer on PAC-Bayesian Learning
A Primer on PAC-Bayesian Learning
Benjamin Guedj
517
233
0
16 Jan 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin DynamicsNeural Information Processing Systems (NeurIPS), 2018
N. Brosse
Alain Durmus
Eric Moulines
232
88
0
25 Nov 2018
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
166
66
0
02 Oct 2018
Unbiased estimation of log normalizing constants with applications to
  Bayesian cross-validation
Unbiased estimation of log normalizing constants with applications to Bayesian cross-validation
M. Rischard
Pierre E. Jacob
Natesh Pillai
158
22
0
02 Oct 2018
Subsampling MCMC - An introduction for the survey statistician
Subsampling MCMC - An introduction for the survey statistician
M. Quiroz
M. Villani
Robert Kohn
Minh-Ngoc Tran
Khue-Dung Dang
285
24
0
23 Jul 2018
Previous
123
Next