Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1505.02827
Cited By
On Markov chain Monte Carlo methods for tall data
11 May 2015
Rémi Bardenet
Arnaud Doucet
Chris Holmes
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Markov chain Monte Carlo methods for tall data"
45 / 145 papers shown
Correlated pseudo-marginal Metropolis-Hastings using quasi-Newton proposals
J. Dahlin
A. Wills
B. Ninness
148
0
0
26 Jun 2018
An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
Liangliang Wang
Shijia Wang
Alexandre Bouchard-Côté
160
38
0
22 Jun 2018
Scalable Bayesian Nonparametric Clustering and Classification
Yang Ni
Peter Muller
M. Diesendruck
Sinead Williamson
Yitan Zhu
Yuan Ji
150
30
0
07 Jun 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
333
53
0
08 May 2018
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
265
146
0
08 Apr 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Sai Li
165
87
0
15 Feb 2018
Bootstrapped synthetic likelihood
R. Everitt
333
14
0
15 Nov 2017
On the Consistency of Graph-based Bayesian Learning and the Scalability of Sampling Algorithms
Nicolas García Trillos
Zachary T. Kaplan
Thabo Samakhoana
D. Sanz-Alonso
219
23
0
20 Oct 2017
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
Tamara Broderick
245
134
0
13 Oct 2017
Efficient MCMC for Gibbs Random Fields using pre-computation
A. Boland
Nial Friel
Florian Maire
290
19
0
11 Oct 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
330
35
0
26 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
188
28
0
04 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
295
65
0
02 Aug 2017
Mini-batch Tempered MCMC
Dangna Li
W. Wong
404
9
0
31 Jul 2017
Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets
Florian Maire
Nial Friel
Pierre Alquier
251
15
0
26 Jun 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
255
105
0
16 Jun 2017
Generalized Bouncy Particle Sampler
Changye Wu
Christian P. Robert
176
25
0
15 Jun 2017
Average of Recentered Parallel MCMC for Big Data
Changye Wu
Christian P. Robert
137
7
0
15 Jun 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
345
24
0
02 May 2017
Piecewise Deterministic Markov Processes for Scalable Monte Carlo on Restricted Domains
J. Bierkens
Alexandre Bouchard-Côté
Arnaud Doucet
Andrew B. Duncan
Paul Fearnhead
Thibaut Lienart
Gareth O. Roberts
Sebastian J. Vollmer
251
55
0
16 Jan 2017
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
133
114
0
23 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
207
23
0
21 Oct 2016
Sampling hyperparameters in hierarchical models: improving on Gibbs for high-dimensional latent fields and large data sets
R. Norton
J. Christen
C. Fox
145
7
0
21 Oct 2016
An Efficient Minibatch Acceptance Test for Metropolis-Hastings
Daniel Seita
Xinlei Pan
Haoyu Chen
John F. Canny
219
45
0
19 Oct 2016
Multilevel Monte Carlo for Scalable Bayesian Computations
M. Giles
Tigran Nagapetyan
Lukasz Szpruch
Sebastian J. Vollmer
K. Zygalakis
195
9
0
15 Sep 2016
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
310
23
0
12 Sep 2016
Stochastic Bouncy Particle Sampler
Ari Pakman
D. Gilboa
David Carlson
Liam Paninski
172
32
0
03 Sep 2016
Joining and splitting models with Markov melding
Robert J. B. Goudie
A. Presanis
David J. Lunn
Daniela De Angelis
L. Wernisch
216
35
0
22 Jul 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
Annals of Statistics (Ann. Stat.), 2016
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
260
241
0
11 Jul 2016
Fast robustness quantification with variational Bayes
Ryan Giordano
Tamara Broderick
Rachael Meager
Jonathan H. Huggins
Sai Li
112
10
0
23 Jun 2016
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
306
226
0
20 May 2016
Quantifying the accuracy of approximate diffusions and Markov chains
Jonathan H. Huggins
James Zou
343
30
0
20 May 2016
The block-Poisson estimator for optimally tuned exact subsampling MCMC
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
Khue-Dung Dang
411
27
0
27 Mar 2016
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
263
94
0
16 Feb 2016
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Côté
Sebastian J. Vollmer
Arnaud Doucet
329
245
0
08 Oct 2015
Optimal approximating Markov chains for Bayesian inference
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
286
31
0
13 Aug 2015
Orthogonal parallel MCMC methods for sampling and optimization
Luca Martino
Victor Elvira
D. Luengo
J. Corander
F. Louzada
246
77
0
30 Jul 2015
Speeding Up MCMC by Delayed Acceptance and Data Subsampling
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
298
42
0
22 Jul 2015
Scalable MCMC for Large Data Problems using Data Subsampling and the Difference Estimator
M. Quiroz
M. Villani
Robert Kohn
154
10
0
10 Jul 2015
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
Yutian Chen
Zoubin Ghahramani
294
16
0
30 Jun 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
198
79
0
29 Jun 2015
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
302
111
0
13 Mar 2015
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle
Clara Grazian
Anthony Lee
Christian P. Robert
245
59
0
03 Mar 2015
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Journal of machine learning research (JMLR), 2014
Aki Vehtari
Andrew Gelman
Tuomas Sivula
Pasi Jylänki
Dustin Tran
Swupnil Sahai
Paul Blomstedt
John P. Cunningham
D. Schiminovich
Christian P. Robert
431
36
0
16 Dec 2014
Speeding Up MCMC by Efficient Data Subsampling
Journal of the American Statistical Association (JASA), 2014
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
387
180
0
16 Apr 2014
Previous
1
2
3