Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.03039
Cited By
Measuring Sample Quality with Stein's Method
9 June 2015
Jackson Gorham
Lester W. Mackey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Measuring Sample Quality with Stein's Method"
50 / 62 papers shown
Title
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
92
0
0
24 Feb 2025
Sequential Kernelized Stein Discrepancy
Diego Martinez-Taboada
Aaditya Ramdas
38
0
0
26 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
46
1
0
12 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Touring sampling with pushforward maps
Vivien A. Cabannes
Charles Arnal
26
0
0
23 Nov 2023
Gibbs Sampling the Posterior of Neural Networks
Giovanni Piccioli
Emanuele Troiani
Lenka Zdeborová
41
2
0
05 Jun 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
32
0
0
21 May 2023
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
29
2
0
25 Apr 2023
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
7
0
28 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
34
7
0
01 Dec 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
28
18
0
17 Nov 2022
A kernel Stein test of goodness of fit for sequential models
Jerome Baum
Heishiro Kanagawa
A. Gretton
24
9
0
19 Oct 2022
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
33
4
0
29 Sep 2022
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
48
14
0
26 Sep 2022
A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
George Wynne
Mikolaj Kasprzak
Andrew B. Duncan
25
4
0
09 Jun 2022
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators
Wenkai Xu
Gesine Reinert
32
4
0
07 Mar 2022
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
30
8
0
06 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
30
14
0
19 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
41
13
0
03 Nov 2021
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
36
29
0
04 Oct 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
39
2
0
13 Sep 2021
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
21
153
0
25 Jul 2021
Interpreting diffusion score matching using normalizing flow
Wenbo Gong
Yingzhen Li
DiffM
27
13
0
21 Jul 2021
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
22
4
0
20 Jul 2021
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
22
35
0
07 May 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
22
17
0
06 May 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
33
9
0
15 Apr 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
27
74
0
15 Apr 2021
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
22
17
0
30 Mar 2021
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
241
0
09 Jan 2021
Blindness of score-based methods to isolated components and mixing proportions
Wenliang K. Li
Heishiro Kanagawa
17
34
0
23 Aug 2020
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
32
23
0
20 May 2020
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
25
27
0
03 May 2020
Convergence diagnostics for Markov chain Monte Carlo
Vivekananda Roy
21
217
0
26 Sep 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
22
134
0
16 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
43
397
0
25 Jun 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
33
90
0
19 Jun 2019
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
27
47
0
23 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
35
56
0
09 May 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
27
155
0
03 Apr 2019
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
35
45
0
20 Jun 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
17
90
0
07 Jun 2018
Sobolev Descent
Youssef Mroueh
Tom Sercu
Anant Raj
OT
21
1
0
30 May 2018
Fisher Efficient Inference of Intractable Models
Song Liu
Takafumi Kanamori
Wittawat Jitkrittum
Yu Chen
29
14
0
18 May 2018
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco F. Cusumano-Towner
Vikash K. Mansinghka
8
17
0
19 May 2017
1
2
Next