ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.07405
  4. Cited By
Global Convergence of a Grassmannian Gradient Descent Algorithm for
  Subspace Estimation
v1v2v3 (latest)

Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation

24 June 2015
Dejiao Zhang
Laura Balzano
ArXiv (abs)PDFHTML

Papers citing "Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation"

25 / 25 papers shown
Randomized Gradient Subspaces for Efficient Large Language Model Training
Randomized Gradient Subspaces for Efficient Large Language Model Training
Sahar Rajabi
Nayeema Nonta
Samanvay Vajpayee
Sirisha Rambhatla
111
0
0
02 Oct 2025
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Alex Saad-Falcon
Brighton Ancelin
Justin Romberg
128
0
0
16 May 2025
SubTrack++ : Gradient Subspace Tracking for Scalable LLM Training
SubTrack++ : Gradient Subspace Tracking for Scalable LLM Training
Sahar Rajabi
Nayeema Nonta
Sirisha Rambhatla
522
1
0
03 Feb 2025
Mining of Switching Sparse Networks for Missing Value Imputation in
  Multivariate Time Series
Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time SeriesKnowledge Discovery and Data Mining (KDD), 2024
Kohei Obata
Koki Kawabata
Yasuko Matsubara
Yasushi Sakurai
AI4TS
192
6
0
16 Sep 2024
Local Linear Convergence of Gradient Methods for Subspace Optimization
  via Strict Complementarity
Local Linear Convergence of Gradient Methods for Subspace Optimization via Strict ComplementarityNeural Information Processing Systems (NeurIPS), 2022
Dan Garber
Ron Fisher
249
1
0
08 Feb 2022
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized Regime
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized RegimeSIAM Journal on Optimization (SIAM J. Optim.), 2021
Richard Y. Zhang
358
25
0
21 Apr 2021
Sequential (Quickest) Change Detection: Classical Results and New
  Directions
Sequential (Quickest) Change Detection: Classical Results and New DirectionsIEEE Journal on Selected Areas in Information Theory (JSAIT), 2021
Liyan Xie
Shaofeng Zou
Yao Xie
Venugopal V. Veeravalli
AI4TS
233
122
0
09 Apr 2021
Federated Over-Air Subspace Tracking from Incomplete and Corrupted Data
Federated Over-Air Subspace Tracking from Incomplete and Corrupted DataIEEE Transactions on Signal Processing (TSP), 2020
Praneeth Narayanamurthy
Namrata Vaswani
Aditya Ramamoorthy
460
12
0
28 Feb 2020
Distributed Stochastic Algorithms for High-rate Streaming Principal
  Component Analysis
Distributed Stochastic Algorithms for High-rate Streaming Principal Component Analysis
Haroon Raja
W. Bajwa
192
11
0
04 Jan 2020
Exponentially convergent stochastic k-PCA without variance reduction
Exponentially convergent stochastic k-PCA without variance reduction
Cheng Tang
188
30
0
03 Apr 2019
Provable Subspace Tracking from Missing Data and Matrix Completion
Provable Subspace Tracking from Missing Data and Matrix Completion
Praneeth Narayanamurthy
Vahid Daneshpajooh
Namrata Vaswani
269
23
0
06 Oct 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
202
95
0
12 Jun 2018
Subspace Estimation from Incomplete Observations: A High-Dimensional
  Analysis
Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis
Chuang Wang
Yonina C. Eldar
Yue M. Lu
319
18
0
17 May 2018
Static and Dynamic Robust PCA and Matrix Completion: A Review
Static and Dynamic Robust PCA and Matrix Completion: A ReviewProceedings of the IEEE (Proc. IEEE), 2018
Namrata Vaswani
Praneeth Narayanamurthy
279
78
0
01 Mar 2018
Subspace Clustering using Ensembles of $K$-Subspaces
Subspace Clustering using Ensembles of KKK-Subspaces
J. Lipor
David Hong
Dejiao Zhang
Laura Balzano
273
28
0
14 Sep 2017
A Well-Tempered Landscape for Non-convex Robust Subspace Recovery
A Well-Tempered Landscape for Non-convex Robust Subspace RecoveryJournal of machine learning research (JMLR), 2017
Tyler Maunu
Teng Zhang
Gilad Lerman
281
66
0
13 Jun 2017
Sequential Low-Rank Change Detection
Sequential Low-Rank Change Detection
Yao Xie
Lee M. Seversky
209
2
0
03 Oct 2016
Convergence of a Grassmannian Gradient Descent Algorithm for Subspace
  Estimation From Undersampled Data
Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation From Undersampled Data
Dejiao Zhang
Laura Balzano
285
13
0
01 Oct 2016
Provable Burer-Monteiro factorization for a class of norm-constrained
  matrix problems
Provable Burer-Monteiro factorization for a class of norm-constrained matrix problems
Dohyung Park
Anastasios Kyrillidis
Srinadh Bhojanapalli
Constantine Caramanis
Sujay Sanghavi
242
22
0
04 Jun 2016
Global Optimality of Local Search for Low Rank Matrix Recovery
Global Optimality of Local Search for Low Rank Matrix Recovery
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
ODL
279
400
0
23 May 2016
Dropping Convexity for Faster Semi-definite Optimization
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
320
177
0
14 Sep 2015
Fast low-rank estimation by projected gradient descent: General
  statistical and algorithmic guarantees
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
Yudong Chen
Martin J. Wainwright
562
329
0
10 Sep 2015
The local convexity of solving systems of quadratic equations
The local convexity of solving systems of quadratic equations
Christopher D. White
Sujay Sanghavi
Rachel A. Ward
247
72
0
25 Jun 2015
Adaptive Stochastic Gradient Descent on the Grassmannian for Robust
  Low-Rank Subspace Recovery and Clustering
Adaptive Stochastic Gradient Descent on the Grassmannian for Robust Low-Rank Subspace Recovery and Clustering
Jun He
Yue Zhang
162
8
0
12 Dec 2014
Fast, Robust and Non-convex Subspace Recovery
Fast, Robust and Non-convex Subspace Recovery
Gilad Lerman
Tyler Maunu
251
83
0
24 Jun 2014
1