Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.07540
Cited By
Global Optimality in Tensor Factorization, Deep Learning, and Beyond
24 June 2015
B. Haeffele
René Vidal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Global Optimality in Tensor Factorization, Deep Learning, and Beyond"
50 / 83 papers shown
Title
Guarantees of a Preconditioned Subgradient Algorithm for Overparameterized Asymmetric Low-rank Matrix Recovery
Paris Giampouras
HanQin Cai
René Vidal
143
4
0
22 Oct 2024
Simplicity within biological complexity
Nataša Pržulj
N. Malod-Dognin
68
0
0
15 May 2024
Differentially Private Adapters for Parameter Efficient Acoustic Modeling
Chun-Wei Ho
Chao-Han Huck Yang
Sabato Marco Siniscalchi
98
1
0
19 May 2023
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
76
65
0
04 Oct 2022
On the generalization of learning algorithms that do not converge
N. Chandramoorthy
Andreas Loukas
Khashayar Gatmiry
Stefanie Jegelka
MLT
91
11
0
16 Aug 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
158
82
0
08 Jun 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
78
102
0
02 Mar 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
104
37
0
20 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
50
1
0
25 Dec 2021
Error Bounds for a Matrix-Vector Product Approximation with Deep ReLU Neural Networks
T. Getu
54
2
0
25 Nov 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
203
87
0
06 Oct 2021
Two-level monotonic multistage recommender systems
Ben Dai
Xiaotong Shen
Wei Pan
47
1
0
06 Oct 2021
Tensor Methods in Computer Vision and Deep Learning
Yannis Panagakis
Jean Kossaifi
Grigorios G. Chrysos
James Oldfield
M. Nicolaou
Anima Anandkumar
Stefanos Zafeiriou
62
126
0
07 Jul 2021
Understanding approximate and unrolled dictionary learning for pattern recovery
Benoit Malézieux
Thomas Moreau
M. Kowalski
MU
54
13
0
11 Jun 2021
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
65
5
0
08 Jun 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
88
204
0
06 May 2021
Noether: The More Things Change, the More Stay the Same
Grzegorz Gluch
R. Urbanke
58
18
0
12 Apr 2021
Why Do Local Methods Solve Nonconvex Problems?
Tengyu Ma
54
13
0
24 Mar 2021
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
77
1
0
07 Jan 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
93
1
0
07 Dec 2020
Escaping Saddle-Points Faster under Interpolation-like Conditions
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
P. Mohapatra
67
1
0
28 Sep 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
87
45
0
14 Jul 2020
Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli
Eric Vanden-Eijnden
Lenka Zdeborová
AI4CE
67
49
0
27 Jun 2020
The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions
Yifei Wang
Jonathan Lacotte
Mert Pilanci
MLT
65
27
0
10 Jun 2020
Stationary Points of Shallow Neural Networks with Quadratic Activation Function
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
43
14
0
03 Dec 2019
How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?
Zixiang Chen
Yuan Cao
Difan Zou
Quanquan Gu
77
123
0
27 Nov 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
Jason D. Lee
65
116
0
03 Oct 2019
Stochastic Conditional Generative Networks with Basis Decomposition
Ze Wang
Xiuyuan Cheng
Guillermo Sapiro
Qiang Qiu
GAN
135
18
0
25 Sep 2019
Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization
Hui Jiang
21
8
0
06 Mar 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
143
158
0
04 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
234
974
0
24 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
116
38
0
28 Dec 2018
Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation
T. Bouwmans
S. Javed
M. Sultana
Soon Ki Jung
84
322
0
13 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
283
1,136
0
09 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
242
193
0
29 Oct 2018
Benefits of over-parameterization with EM
Ji Xu
Daniel J. Hsu
A. Maleki
287
31
0
26 Oct 2018
The loss surface of deep linear networks viewed through the algebraic geometry lens
D. Mehta
Tianran Chen
Tingting Tang
J. Hauenstein
ODL
92
32
0
17 Oct 2018
Adaptive Low-Nonnegative-Rank Approximation for State Aggregation of Markov Chains
Yaqi Duan
Mengdi Wang
Zaiwen Wen
Ya-Xiang Yuan
28
7
0
14 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
268
245
0
12 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
272
1,276
0
04 Oct 2018
Global Optimality in Separable Dictionary Learning with Applications to the Analysis of Diffusion MRI
Evan Schwab
B. Haeffele
René Vidal
N. Charon
OOD
MedIm
42
2
0
15 Jul 2018
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
S. Du
Wei Hu
Jason D. Lee
MLT
168
243
0
04 Jun 2018
Interpreting Deep Learning: The Machine Learning Rorschach Test?
Adam S. Charles
AAML
HAI
AI4CE
102
9
0
01 Jun 2018
Adding One Neuron Can Eliminate All Bad Local Minima
Shiyu Liang
Ruoyu Sun
Jason D. Lee
R. Srikant
100
90
0
22 May 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
91
57
0
21 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
93
17
0
20 May 2018
The Loss Surface of XOR Artificial Neural Networks
D. Mehta
Xiaojun Zhao
Edgar A. Bernal
D. Wales
158
19
0
06 Apr 2018
Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision
Sathya Ravi
Tuan Dinh
Vishnu Suresh Lokhande
Vikas Singh
AI4CE
71
22
0
17 Mar 2018
On the Power of Over-parametrization in Neural Networks with Quadratic Activation
S. Du
Jason D. Lee
186
272
0
03 Mar 2018
Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation
Yudong Chen
Yuejie Chi
147
172
0
23 Feb 2018
1
2
Next