Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.00677
Cited By
Distributional Smoothing with Virtual Adversarial Training
2 July 2015
Takeru Miyato
S. Maeda
Masanori Koyama
Ken Nakae
S. Ishii
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributional Smoothing with Virtual Adversarial Training"
50 / 102 papers shown
Title
Unsupervised Domain Adaptation via Regularized Conditional Alignment
Safa Cicek
Stefano Soatto
OOD
39
118
0
26 May 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
24
57
0
21 Jan 2019
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers
Daniel Liu
Ronald Yu
Hao Su
3DPC
34
165
0
10 Jan 2019
Adversarial Sampling and Training for Semi-Supervised Information Retrieval
Dae Hoon Park
Yi-Ju Chang
FedML
25
101
0
09 Nov 2018
Classification from Positive, Unlabeled and Biased Negative Data
Yu-Guan Hsieh
Gang Niu
Masashi Sugiyama
22
79
0
01 Oct 2018
Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark
Minh-Thang Luong
Christopher D. Manning
Quoc V. Le
SSL
11
333
0
22 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
28
21
0
18 Sep 2018
Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction
Jianguo Zhang
Ji Wang
Lifang He
Zhao Li
Philip S. Yu
29
31
0
11 Sep 2018
On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Nan Lu
Gang Niu
A. Menon
Masashi Sugiyama
MQ
30
86
0
31 Aug 2018
Denoising Distant Supervision for Relation Extraction via Instance-Level Adversarial Training
Xu Han
Zhiyuan Liu
Maosong Sun
30
16
0
28 May 2018
Defending Against Adversarial Attacks by Leveraging an Entire GAN
G. Santhanam
Paulina Grnarova
AAML
16
40
0
27 May 2018
Adversarially Robust Training through Structured Gradient Regularization
Kevin Roth
Aurelien Lucchi
Sebastian Nowozin
Thomas Hofmann
30
23
0
22 May 2018
Towards Robust Neural Machine Translation
Yong Cheng
Zhaopeng Tu
Fandong Meng
Junjie Zhai
Yang Liu
AAML
25
161
0
16 May 2018
Interpretable Adversarial Perturbation in Input Embedding Space for Text
Motoki Sato
Jun Suzuki
Hiroyuki Shindo
Yuji Matsumoto
24
188
0
08 May 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
22
21
0
23 Apr 2018
Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the
L
0
L_0
L
0
Norm
Wenjie Ruan
Min Wu
Youcheng Sun
Xiaowei Huang
Daniel Kroening
Marta Kwiatkowska
AAML
15
38
0
16 Apr 2018
The Effects of JPEG and JPEG2000 Compression on Attacks using Adversarial Examples
Ayse Elvan Aydemir
A. Temi̇zel
T. Taşkaya-Temizel
AAML
19
30
0
28 Mar 2018
Speech Recognition: Keyword Spotting Through Image Recognition
Sanjay Krishna Gouda
S. Kanetkar
David J. Harrison
Manfred K. Warmuth
30
22
0
10 Mar 2018
Protecting JPEG Images Against Adversarial Attacks
Aaditya (Adi) Prakash
N. Moran
Solomon Garber
Antonella DiLillo
J. Storer
AAML
28
34
0
02 Mar 2018
Adversarial Texts with Gradient Methods
Zhitao Gong
Wenlu Wang
Yangqiu Song
D. Song
Wei-Shinn Ku
AAML
34
77
0
22 Jan 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
ReabsNet: Detecting and Revising Adversarial Examples
Jiefeng Chen
Zihang Meng
Changtian Sun
Weiliang Tang
Yinglun Zhu
AAML
GAN
29
4
0
21 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
26
249
0
30 Nov 2017
A Semantic Loss Function for Deep Learning with Symbolic Knowledge
Jingyi Xu
Zilu Zhang
Tal Friedman
Yitao Liang
Mathias Niepert
46
446
0
29 Nov 2017
Adversarial Dropout Regularization
Kuniaki Saito
Yoshitaka Ushiku
Tatsuya Harada
Kate Saenko
GAN
25
284
0
05 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
58
855
0
29 Oct 2017
Binary Classification from Positive-Confidence Data
Takashi Ishida
Gang Niu
Masashi Sugiyama
38
56
0
19 Oct 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
Learning to Compose Domain-Specific Transformations for Data Augmentation
Alexander J. Ratner
Henry R. Ehrenberg
Zeshan Hussain
Jared A. Dunnmon
Christopher Ré
39
347
0
06 Sep 2017
Adversarial Dropout for Supervised and Semi-supervised Learning
Sungrae Park
Jun-Keon Park
Su-Jin Shin
Il-Chul Moon
GAN
35
174
0
12 Jul 2017
Learning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks
Cicero Nogueira dos Santos
Kahini Wadhawan
Bowen Zhou
GAN
30
30
0
07 Jul 2017
Learning by Association - A versatile semi-supervised training method for neural networks
Philip Häusser
A. Mordvintsev
Daniel Cremers
BDL
25
121
0
03 Jun 2017
PixelGAN Autoencoders
Alireza Makhzani
Brendan J. Frey
GAN
32
100
0
02 Jun 2017
Good Semi-supervised Learning that Requires a Bad GAN
Zihang Dai
Zhilin Yang
Fan Yang
William W. Cohen
Ruslan Salakhutdinov
GAN
22
481
0
27 May 2017
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Abhishek Kumar
P. Sattigeri
P. T. Fletcher
GAN
23
42
0
24 May 2017
Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN
Hyeungill Lee
Sungyeob Han
Jungwoo Lee
AAML
GAN
8
149
0
09 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
86
798
0
28 Apr 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
33
2,720
0
13 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Triple Generative Adversarial Nets
Chongxuan Li
T. Xu
Jun Zhu
Bo Zhang
GAN
42
449
0
07 Mar 2017
Learning Discrete Representations via Information Maximizing Self-Augmented Training
Weihua Hu
Takeru Miyato
Seiya Tokui
Eiichi Matsumoto
Masashi Sugiyama
41
446
0
28 Feb 2017
Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
Guo-Jun Qi
GAN
27
350
0
23 Jan 2017
Dense Associative Memory is Robust to Adversarial Inputs
Dmitry Krotov
J. Hopfield
AAML
31
111
0
04 Jan 2017
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
298
3,113
0
04 Nov 2016
Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches
E. Rodner
Marcel Simon
Robert B. Fisher
Joachim Denzler
22
39
0
21 Oct 2016
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
90
2,524
0
07 Oct 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
161
8,937
0
10 Jun 2016
Previous
1
2
3
Next