Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.00996
Cited By
v1
v2 (latest)
A New Approach to Probabilistic Programming Inference
3 July 2015
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A New Approach to Probabilistic Programming Inference"
50 / 123 papers shown
Title
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
97
0
12 Mar 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
80
25
0
06 Mar 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
Willie Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric Xing
94
18
0
31 Jan 2019
Soft Constraints for Inference with Declarative Knowledge
Zenna Tavares
Javier Burroni
Edgar Minaysan
Armando Solar-Lezama
Rajesh Ranganath
43
2
0
16 Jan 2019
A Generalization of Hierarchical Exchangeability on Trees to Directed Acyclic Graphs
Paul Jung
Jiho Lee
S. Staton
Hongseok Yang
47
9
0
15 Dec 2018
Doubly Bayesian Optimization
Alexander Lavin
38
0
0
11 Dec 2018
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
83
13
0
04 Dec 2018
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
76
63
0
02 Oct 2018
Inference Over Programs That Make Predictions
Yura N. Perov
35
2
0
02 Oct 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Scenic: A Language for Scenario Specification and Scene Generation
Daniel J. Fremont
T. Dreossi
Shromona Ghosh
Xiangyu Yue
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
76
263
0
25 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
90
31
0
20 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
85
13
0
22 Jun 2018
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
Yi Wu
Siddharth Srivastava
N. Hay
S. Du
Stuart J. Russell
68
25
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
125
32
0
01 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
188
181
0
30 May 2018
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Bradley Gram-Hansen
Yuanshuo Zhou
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank Wood
26
3
0
07 Apr 2018
Nesting Probabilistic Programs
Tom Rainforth
TPM
68
24
0
16 Mar 2018
Probabilistic supervised learning
Frithjof Gressmann
Franz J. Király
Bilal A. Mateen
Harald Oberhauser
50
15
0
02 Jan 2018
SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model
Tomoaki Nakamura
Takayuki Nagai
T. Taniguchi
3DV
64
44
0
04 Dec 2017
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
154
132
0
18 Sep 2017
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs
Lawrence M. Murray
Daniel Lundén
J. Kudlicka
David Broman
Thomas B. Schon
64
60
0
25 Aug 2017
Bayesian Optimization for Probabilistic Programs
Tom Rainforth
T. Le
Jan-Willem van de Meent
Michael A. Osborne
Frank Wood
TPM
72
27
0
13 Jul 2017
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
185
363
0
01 Jun 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
345
153
0
29 May 2017
Probabilistic Program Abstractions
Steven Holtzen
T. Millstein
Guy Van den Broeck
42
15
0
28 May 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank Wood
SyDa
OOD
160
89
0
02 Mar 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
142
193
0
13 Jan 2017
A Convenient Category for Higher-Order Probability Theory
C. Heunen
Ohad Kammar
S. Staton
Hongseok Yang
101
161
0
10 Jan 2017
Encapsulating models and approximate inference programs in probabilistic modules
Marco F. Cusumano-Towner
Vikash K. Mansinghka
TPM
19
2
0
14 Dec 2016
On the Pitfalls of Nested Monte Carlo
Tom Rainforth
R. Cornish
Hongseok Yang
Frank Wood
64
9
0
03 Dec 2016
Tuning the Scheduling of Distributed Stochastic Gradient Descent with Bayesian Optimization
Valentin Dalibard
Michael Schaarschmidt
Eiko Yoneki
29
2
0
01 Dec 2016
Probabilistic structure discovery in time series data
David Janz
Brooks Paige
Tom Rainforth
Jan-Willem van de Meent
Frank Wood
AI4TS
20
9
0
21 Nov 2016
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
219
143
0
31 Oct 2016
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
113
300
0
31 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
111
82
0
18 Oct 2016
Probabilistic Safety Programs
Ashish Kapoor
Debadeepta Dey
S. Shah
25
0
0
17 Oct 2016
Logical Induction
Scott Garrabrant
Tsvi Benson-Tilsen
Andrew Critch
N. Soares
Jessica Taylor
84
39
0
12 Sep 2016
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
66
28
0
02 Sep 2016
Swift: Compiled Inference for Probabilistic Programming Languages
Yi Wu
Lei Li
Stuart J. Russell
Rastislav Bodík
96
29
0
30 Jun 2016
Spreadsheet Probabilistic Programming
Mike Wu
Yura N. Perov
Frank Wood
Hongseok Yang
49
3
0
14 Jun 2016
Post-Inference Prior Swapping
Willie Neiswanger
Eric Xing
19
1
0
02 Jun 2016
Applications of Probabilistic Programming (Master's thesis, 2015)
Yura N. Perov
55
4
0
31 May 2016
Composing inference algorithms as program transformations
R. Zinkov
Chung-chieh Shan
TPM
83
30
0
06 Mar 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
133
719
0
02 Mar 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
165
110
0
22 Feb 2016
Interacting Particle Markov Chain Monte Carlo
Tom Rainforth
C. A. Naesseth
Fredrik Lindsten
Brooks Paige
Jan-Willem van de Meent
Arnaud Doucet
Frank Wood
72
34
0
16 Feb 2016
Bayesian inference in non-Markovian state-space models with applications to fractional order systems
Pierre E. Jacob
S. Alavi
A. Mahdi
S. Payne
David A. Howey
53
22
0
28 Jan 2016
Previous
1
2
3
Next