ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.00996
  4. Cited By
A New Approach to Probabilistic Programming Inference
v1v2 (latest)

A New Approach to Probabilistic Programming Inference

3 July 2015
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
ArXiv (abs)PDFHTML

Papers citing "A New Approach to Probabilistic Programming Inference"

23 / 123 papers shown
Title
Bachelor's thesis on generative probabilistic programming (in Russian
  language, June 2014)
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
Yura N. Perov
BDL
20
0
0
26 Jan 2016
Semantics for probabilistic programming: higher-order functions,
  continuous distributions, and soft constraints
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
S. Staton
Hongseok Yang
C. Heunen
Ohad Kammar
Frank Wood
92
136
0
19 Jan 2016
Data-driven Sequential Monte Carlo in Probabilistic Programming
Data-driven Sequential Monte Carlo in Probabilistic Programming
Yura N. Perov
T. Le
Frank Wood
BDL
52
7
0
14 Dec 2015
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
97
25
0
05 Nov 2015
A General Method for Robust Bayesian Modeling
A General Method for Robust Bayesian Modeling
Chong-Jun Wang
David M. Blei
OOD
64
53
0
17 Oct 2015
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using
  Continuations and Callsite Caching
C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching
Daniel E. Ritchie
Andreas Stuhlmuller
Noah D. Goodman
80
30
0
07 Sep 2015
Black-Box Policy Search with Probabilistic Programs
Black-Box Policy Search with Probabilistic Programs
Jan-Willem van de Meent
Brooks Paige
David Tolpin
Frank Wood
117
24
0
16 Jul 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
99
233
0
10 Jun 2015
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Hinge-Loss Markov Random Fields and Probabilistic Soft Logic
Stephen H. Bach
Matthias Broecheler
Bert Huang
Lise Getoor
TPMAI4CE
143
389
0
17 May 2015
Sequential Bayesian inference for implicit hidden Markov models and
  current limitations
Sequential Bayesian inference for implicit hidden Markov models and current limitations
Pierre E. Jacob
74
15
0
16 May 2015
Maximum a Posteriori Estimation by Search in Probabilistic Programs
Maximum a Posteriori Estimation by Search in Probabilistic Programs
David Tolpin
Frank Wood
TPM
65
12
0
26 Apr 2015
Path Finding under Uncertainty through Probabilistic Inference
Path Finding under Uncertainty through Probabilistic Inference
David Tolpin
Brooks Paige
Jan-Willem van de Meent
Frank Wood
TPM
66
0
0
25 Feb 2015
Computing Functions of Random Variables via Reproducing Kernel Hilbert
  Space Representations
Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations
Bernhard Schölkopf
Krikamol Muandet
Kenji Fukumizu
J. Peters
76
38
0
27 Jan 2015
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
Jan-Willem van de Meent
Hongseok Yang
Vikash K. Mansinghka
Frank Wood
80
33
0
27 Jan 2015
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
66
1
0
22 Jan 2015
Slice Sampling for Probabilistic Programming
Slice Sampling for Probabilistic Programming
R. Ranca
Zoubin Ghahramani
TPM
30
2
0
20 Jan 2015
Value Iteration with Options and State Aggregation
Value Iteration with Options and State Aggregation
K. Ciosek
David Silver
52
11
0
16 Jan 2015
Biips: Software for Bayesian Inference with Interacting Particle Systems
Biips: Software for Bayesian Inference with Interacting Particle Systems
A. Todeschini
François Caron
Marc Fuentes
P. Legrand
P. Del Moral
77
26
0
11 Dec 2014
Augmentation Schemes for Particle MCMC
Augmentation Schemes for Particle MCMC
Paul Fearnhead
Loukia Meligkotsidou
93
19
0
29 Aug 2014
Asynchronous Anytime Sequential Monte Carlo
Asynchronous Anytime Sequential Monte Carlo
Brooks Paige
Frank Wood
Arnaud Doucet
Yee Whye Teh
60
47
0
10 Jul 2014
Learning Probabilistic Programs
Learning Probabilistic Programs
Yura N. Perov
Frank Wood
TPM
73
15
0
09 Jul 2014
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
100
256
0
01 Apr 2014
A Compilation Target for Probabilistic Programming Languages
A Compilation Target for Probabilistic Programming Languages
Brooks Paige
Frank Wood
118
80
0
03 Mar 2014
Previous
123