ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.02646
  4. Cited By
Pareto Smoothed Importance Sampling

Pareto Smoothed Importance Sampling

9 July 2015
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
ArXivPDFHTML

Papers citing "Pareto Smoothed Importance Sampling"

25 / 25 papers shown
Title
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
31
1
0
14 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
70
3
0
23 Aug 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference
  Algorithms
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Bürkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
Differentiable Pareto-Smoothed Weighting for High-Dimensional
  Heterogeneous Treatment Effect Estimation
Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation
Yoichi Chikahara
Kansei Ushiyama
39
0
0
26 Apr 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
20
3
0
15 Jun 2023
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
37
3
0
09 Nov 2022
Autoencoded sparse Bayesian in-IRT factorization, calibration, and
  amortized inference for the Work Disability Functional Assessment Battery
Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery
Joshua C. Chang
Carson C. Chow
Julia Porcino
39
1
0
20 Oct 2022
Efficient Bayes Inference in Neural Networks through Adaptive Importance
  Sampling
Efficient Bayes Inference in Neural Networks through Adaptive Importance Sampling
Yunshi Huang
Émilie Chouzenoux
Victor Elvira
J. Pesquet
BDL
28
5
0
03 Oct 2022
Mathematical Theory of Bayesian Statistics for Unknown Information
  Source
Mathematical Theory of Bayesian Statistics for Unknown Information Source
Sumio Watanabe
24
8
0
11 Jun 2022
Bayesian additive regression trees for probabilistic programming
Bayesian additive regression trees for probabilistic programming
Miriana Quiroga
P. Garay
J. M. Alonso
J. M. Loyola
Osvaldo A. Martin
29
6
0
08 Jun 2022
An importance sampling approach for reliable and efficient inference in
  Bayesian ordinary differential equation models
An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models
Juho Timonen
Nikolas Siccha
Benjamin B. Bales
Harri Lähdesmäki
Aki Vehtari
24
3
0
18 May 2022
A principled stopping rule for importance sampling
A principled stopping rule for importance sampling
Medha Agarwal
Dootika Vats
Victor Elvira
33
2
0
30 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
45
40
0
09 Aug 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
24
40
0
30 Jun 2021
Conformal Bayesian Computation
Conformal Bayesian Computation
Edwin Fong
Chris Holmes
44
24
0
11 Jun 2021
The computational asymptotics of Gaussian variational inference and the
  Laplace approximation
The computational asymptotics of Gaussian variational inference and the Laplace approximation
Zuheng Xu
Trevor Campbell
24
7
0
13 Apr 2021
Decoupled Exploration and Exploitation Policies for Sample-Efficient
  Reinforcement Learning
Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning
William F. Whitney
Michael Bloesch
Jost Tobias Springenberg
A. Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
OffRL
29
13
0
23 Jan 2021
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Bayesian model selection in the $\mathcal{M}$-open setting --
  Approximate posterior inference and probability-proportional-to-size
  subsampling for efficient large-scale leave-one-out cross-validation
Bayesian model selection in the M\mathcal{M}M-open setting -- Approximate posterior inference and probability-proportional-to-size subsampling for efficient large-scale leave-one-out cross-validation
Riko Kelter
21
0
0
27 May 2020
Projective Inference in High-dimensional Problems: Prediction and
  Feature Selection
Projective Inference in High-dimensional Problems: Prediction and Feature Selection
Juho Piironen
Markus Paasiniemi
Aki Vehtari
24
94
0
04 Oct 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
14
57
0
09 Feb 2018
BAMBI: An R package for Fitting Bivariate Angular Mixture Models
BAMBI: An R package for Fitting Bivariate Angular Mixture Models
Saptarshi Chakraborty
Samuel W. K. Wong
29
16
0
25 Aug 2017
Models of retrieval in sentence comprehension: A computational
  evaluation using Bayesian hierarchical modeling
Models of retrieval in sentence comprehension: A computational evaluation using Bayesian hierarchical modeling
Bruno Nicenboim
S. Vasishth
22
68
0
13 Dec 2016
Heretical Multiple Importance Sampling
Heretical Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
21
38
0
15 Sep 2016
1