ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.06149
  4. Cited By
Data-free parameter pruning for Deep Neural Networks

Data-free parameter pruning for Deep Neural Networks

British Machine Vision Conference (BMVC), 2015
22 July 2015
Suraj Srinivas
R. Venkatesh Babu
    3DPC
ArXiv (abs)PDFHTML

Papers citing "Data-free parameter pruning for Deep Neural Networks"

50 / 239 papers shown
CheXtransfer: Performance and Parameter Efficiency of ImageNet Models
  for Chest X-Ray Interpretation
CheXtransfer: Performance and Parameter Efficiency of ImageNet Models for Chest X-Ray InterpretationACM Conference on Health, Inference, and Learning (CHIL), 2021
Alexander Ke
William Ellsworth
Oishi Banerjee
A. Ng
Pranav Rajpurkar
MedIm
232
122
0
18 Jan 2021
Rescaling CNN through Learnable Repetition of Network Parameters
Rescaling CNN through Learnable Repetition of Network ParametersInternational Conference on Information Photonics (ICIP), 2021
Arnav Chavan
Udbhav Bamba
Rishabh Tiwari
D. K. Gupta
122
0
0
14 Jan 2021
Hardware and Software Optimizations for Accelerating Deep Neural
  Networks: Survey of Current Trends, Challenges, and the Road Ahead
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road AheadIEEE Access (IEEE Access), 2020
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Mohamed Bennai
BDL
312
175
0
21 Dec 2020
Model Compression Using Optimal Transport
Model Compression Using Optimal Transport
Suhas Lohit
Michael J. Jones
238
9
0
07 Dec 2020
Improving Neural Network with Uniform Sparse Connectivity
Improving Neural Network with Uniform Sparse ConnectivityIEEE Access (IEEE Access), 2020
Weijun Luo
57
6
0
29 Nov 2020
Rethinking Weight Decay For Efficient Neural Network Pruning
Rethinking Weight Decay For Efficient Neural Network PruningJournal of Imaging (JI), 2020
Hugo Tessier
Vincent Gripon
Mathieu Léonardon
M. Arzel
T. Hannagan
David Bertrand
301
30
0
20 Nov 2020
Layer-Wise Data-Free CNN Compression
Layer-Wise Data-Free CNN CompressionInternational Conference on Pattern Recognition (ICPR), 2020
Maxwell Horton
Yanzi Jin
Ali Farhadi
Mohammad Rastegari
MQ
241
19
0
18 Nov 2020
Dynamic Hard Pruning of Neural Networks at the Edge of the Internet
Dynamic Hard Pruning of Neural Networks at the Edge of the InternetJournal of Network and Computer Applications (JNCA), 2020
Lorenzo Valerio
F. M. Nardini
A. Passarella
R. Perego
226
16
0
17 Nov 2020
Online Ensemble Model Compression using Knowledge Distillation
Online Ensemble Model Compression using Knowledge DistillationEuropean Conference on Computer Vision (ECCV), 2020
Devesh Walawalkar
Zhiqiang Shen
Marios Savvides
151
55
0
15 Nov 2020
Using noise to probe recurrent neural network structure and prune
  synapses
Using noise to probe recurrent neural network structure and prune synapsesNeural Information Processing Systems (NeurIPS), 2020
Eli Moore
Rishidev Chaudhuri
167
8
0
14 Nov 2020
Dirichlet Pruning for Neural Network Compression
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
207
5
0
10 Nov 2020
Architecture Agnostic Neural Networks
Architecture Agnostic Neural Networks
Sabera Talukder
G. Raghavan
Yisong Yue
56
0
0
05 Nov 2020
Filter Pruning using Hierarchical Group Sparse Regularization for Deep
  Convolutional Neural Networks
Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks
Kakeru Mitsuno
Takio Kurita
113
11
0
04 Nov 2020
Methods for Pruning Deep Neural Networks
Methods for Pruning Deep Neural NetworksIEEE Access (IEEE Access), 2020
S. Vadera
Salem Ameen
3DPC
252
174
0
31 Oct 2020
Neuron Merging: Compensating for Pruned Neurons
Neuron Merging: Compensating for Pruned NeuronsNeural Information Processing Systems (NeurIPS), 2020
Woojeong Kim
Suhyun Kim
Mincheol Park
Geonseok Jeon
177
36
0
25 Oct 2020
Towards Accurate Quantization and Pruning via Data-free Knowledge
  Transfer
Towards Accurate Quantization and Pruning via Data-free Knowledge Transfer
Chen Zhu
Zheng Xu
Ali Shafahi
Manli Shu
Amin Ghiasi
Tom Goldstein
MQ
165
3
0
14 Oct 2020
Towards Optimal Filter Pruning with Balanced Performance and Pruning
  Speed
Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed
Dong Li
Sitong Chen
Xudong Liu
Yunda Sun
Li Zhang
VLM
116
7
0
14 Oct 2020
Grow-Push-Prune: aligning deep discriminants for effective structural
  network compression
Grow-Push-Prune: aligning deep discriminants for effective structural network compression
Qing Tian
Tal Arbel
James J. Clark
184
10
0
29 Sep 2020
Learning Realistic Patterns from Unrealistic Stimuli: Generalization and
  Data Anonymization
Learning Realistic Patterns from Unrealistic Stimuli: Generalization and Data AnonymizationJournal of Artificial Intelligence Research (JAIR), 2020
K. Nikolaidis
Stein Kristiansen
T. Plagemann
V. Goebel
Knut Liestøl
...
G. Traaen
Britt Overland
Harriet Akre
L. Aakerøy
S. Steinshamn
167
4
0
21 Sep 2020
Training Sparse Neural Networks using Compressed Sensing
Training Sparse Neural Networks using Compressed Sensing
Jonathan W. Siegel
Jianhong Chen
Pengchuan Zhang
Jinchao Xu
221
7
0
21 Aug 2020
Utilizing Explainable AI for Quantization and Pruning of Deep Neural
  Networks
Utilizing Explainable AI for Quantization and Pruning of Deep Neural Networks
Muhammad Sabih
Frank Hannig
J. Teich
MQ
219
33
0
20 Aug 2020
Compression of Deep Learning Models for Text: A Survey
Compression of Deep Learning Models for Text: A SurveyACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Manish Gupta
Puneet Agrawal
VLMMedImAI4CE
518
134
0
12 Aug 2020
Meta-Learning with Network Pruning
Meta-Learning with Network Pruning
Hongduan Tian
Bo Liu
Xiaotong Yuan
Qingshan Liu
137
31
0
07 Jul 2020
Hybrid Tensor Decomposition in Neural Network Compression
Hybrid Tensor Decomposition in Neural Network Compression
Bijiao Wu
Dingheng Wang
Guangshe Zhao
Lei Deng
Guoqi Li
154
52
0
29 Jun 2020
Dynamic Sampling Networks for Efficient Action Recognition in Videos
Dynamic Sampling Networks for Efficient Action Recognition in Videos
Yin-Dong Zheng
Zhaoyang Liu
Tong Lu
Limin Wang
144
83
0
28 Jun 2020
DeepAbstract: Neural Network Abstraction for Accelerating Verification
DeepAbstract: Neural Network Abstraction for Accelerating VerificationAutomated Technology for Verification and Analysis (ATVA), 2020
P. Ashok
Vahid Hashemi
Jan Křetínský
S. Mohr
122
52
0
24 Jun 2020
Principal Component Networks: Parameter Reduction Early in Training
Principal Component Networks: Parameter Reduction Early in Training
R. Waleffe
Theodoros Rekatsinas
3DPC
150
10
0
23 Jun 2020
Transferring Inductive Biases through Knowledge Distillation
Transferring Inductive Biases through Knowledge Distillation
Samira Abnar
Mostafa Dehghani
Willem H. Zuidema
314
67
0
31 May 2020
Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge
  Applications: A Survey
Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
3DPCMedIm
191
64
0
08 May 2020
Out-of-the-box channel pruned networks
Out-of-the-box channel pruned networks
Ragav Venkatesan
Gurumurthy Swaminathan
Xiong Zhou
Anna Luo
118
0
0
30 Apr 2020
Do We Need Fully Connected Output Layers in Convolutional Networks?
Do We Need Fully Connected Output Layers in Convolutional Networks?
Zhongchao Qian
Tyler L. Hayes
Kushal Kafle
Christopher Kanan
132
9
0
28 Apr 2020
A Generic Network Compression Framework for Sequential Recommender
  Systems
A Generic Network Compression Framework for Sequential Recommender Systems
Yang Sun
Fajie Yuan
Ming Yang
Guoao Wei
Zhou Zhao
Duo Liu
234
59
0
21 Apr 2020
Binary Neural Networks: A Survey
Binary Neural Networks: A SurveyPattern Recognition (Pattern Recognit.), 2020
Haotong Qin
Yazhe Niu
Xianglong Liu
Xiao Bai
Jingkuan Song
Andrii Zadaianchuk
MQ
296
534
0
31 Mar 2020
GraphChallenge.org Sparse Deep Neural Network Performance
GraphChallenge.org Sparse Deep Neural Network PerformanceIEEE Conference on High Performance Extreme Computing (HPEC), 2020
J. Kepner
Simon Alford
V. Gadepally
Michael Jones
Lauren Milechin
Albert Reuther
Ryan A. Robinett
S. Samsi
GNN
174
13
0
25 Mar 2020
Data-Free Knowledge Amalgamation via Group-Stack Dual-GAN
Data-Free Knowledge Amalgamation via Group-Stack Dual-GANComputer Vision and Pattern Recognition (CVPR), 2020
Jingwen Ye
Yixin Ji
Xinchao Wang
Xin Gao
Xiuming Zhang
222
59
0
20 Mar 2020
Generative Low-bitwidth Data Free Quantization
Generative Low-bitwidth Data Free QuantizationEuropean Conference on Computer Vision (ECCV), 2020
Shoukai Xu
Haokun Li
Bohan Zhuang
Jing Liu
Jingyun Liang
Chuangrun Liang
Zhuliang Yu
MQ
256
146
0
07 Mar 2020
Privacy-preserving Learning via Deep Net Pruning
Privacy-preserving Learning via Deep Net Pruning
Yangsibo Huang
Yushan Su
S. S. Ravi
Zhao Song
Sanjeev Arora
Keqin Li
MLT
155
20
0
04 Mar 2020
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism
  Principled Robust Deep Neural Nets
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural NetsInternational Conference on Machine Learning, Optimization, and Data Science (MOD), 2020
Thu Dinh
Bao Wang
Andrea L. Bertozzi
Stanley J. Osher
AAML
134
19
0
02 Mar 2020
A Note on Latency Variability of Deep Neural Networks for Mobile
  Inference
A Note on Latency Variability of Deep Neural Networks for Mobile Inference
Luting Yang
Bingqian Lu
Shaolei Ren
117
6
0
29 Feb 2020
Identifying Critical Neurons in ANN Architectures using Mixed Integer
  Programming
Identifying Critical Neurons in ANN Architectures using Mixed Integer ProgrammingIntegration of AI and OR Techniques in Constraint Programming (CPAIOR), 2020
M. Elaraby
Guy Wolf
Margarida Carvalho
169
5
0
17 Feb 2020
PCNN: Pattern-based Fine-Grained Regular Pruning towards Optimizing CNN
  Accelerators
PCNN: Pattern-based Fine-Grained Regular Pruning towards Optimizing CNN AcceleratorsDesign Automation Conference (DAC), 2020
Zhanhong Tan
Jiebo Song
Xiaolong Ma
S. Tan
Hongyang Chen
...
Yifu Wu
Shaokai Ye
Yanzhi Wang
Dehui Li
Kaisheng Ma
171
28
0
11 Feb 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Proving the Lottery Ticket Hypothesis: Pruning is All You NeedInternational Conference on Machine Learning (ICML), 2020
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
323
312
0
03 Feb 2020
Progressive Local Filter Pruning for Image Retrieval Acceleration
Progressive Local Filter Pruning for Image Retrieval AccelerationIEEE transactions on multimedia (TMM), 2020
Xiaodong Wang
Zhedong Zheng
Yang He
Fei Yan
Zhi-qiang Zeng
Yi Yang
214
48
0
24 Jan 2020
DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
  Trained Classifier
DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a Trained ClassifierAAAI Conference on Artificial Intelligence (AAAI), 2019
Sravanti Addepalli
Gaurav Kumar Nayak
Anirban Chakraborty
R. Venkatesh Babu
156
38
0
27 Dec 2019
An Improving Framework of regularization for Network Compression
An Improving Framework of regularization for Network Compression
E. Zhenqian
Weiguo Gao
AI4CE
113
0
0
11 Dec 2019
Magnitude and Uncertainty Pruning Criterion for Neural Networks
Magnitude and Uncertainty Pruning Criterion for Neural Networks
V. Ko
Stefan Oehmcke
Fabian Gieseke
111
5
0
10 Dec 2019
Frivolous Units: Wider Networks Are Not Really That Wide
Frivolous Units: Wider Networks Are Not Really That WideAAAI Conference on Artificial Intelligence (AAAI), 2019
Stephen Casper
Xavier Boix
Vanessa D’Amario
Ling Guo
Martin Schrimpf
Kasper Vinken
Gabriel Kreiman
263
20
0
10 Dec 2019
Neural Machine Translation: A Review and Survey
Neural Machine Translation: A Review and SurveyJournal of Artificial Intelligence Research (JAIR), 2019
Felix Stahlberg
3DVAI4TSMedIm
391
385
0
04 Dec 2019
Pruning at a Glance: Global Neural Pruning for Model Compression
Pruning at a Glance: Global Neural Pruning for Model Compression
Abdullah Salama
O. Ostapenko
T. Klein
Moin Nabi
VLM
108
14
0
30 Nov 2019
Data-Driven Compression of Convolutional Neural Networks
Data-Driven Compression of Convolutional Neural Networks
Ramit Pahwa
Manoj Ghuhan Arivazhagan
Ankur Garg
S. Krishnamoorthy
Rohit Saxena
Sunav Choudhary
84
3
0
28 Nov 2019
Previous
12345
Next
Page 3 of 5