Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.06244
Cited By
v1
v2 (latest)
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems
22 July 2015
Shiwei Lan
T. Bui-Thanh
M. Christie
Mark Girolami
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems"
23 / 23 papers shown
Title
Are Statistical Methods Obsolete in the Era of Deep Learning?
Skyler Wu
Shihao Yang
S. C. Kou
19
0
0
27 May 2025
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
63
0
0
22 Oct 2024
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
81
3
0
16 Aug 2023
On the surprising effectiveness of a simple matrix exponential derivative approximation, with application to global SARS-CoV-2
G. Didier
N. Glatt-Holtz
Andrew J Holbrook
Andrew F. Magee
M. Suchard
57
4
0
28 Jun 2023
Random-effects substitution models for phylogenetics via scalable gradient approximations
Andrew F. Magee
Andrew J Holbrook
J. Pekar
Itzue W. Caviedes-Solis
IV FredrickA.Matsen
G. Baele
J. Wertheim
Xiang Ji
P. Lemey
M. Suchard
41
5
0
23 Mar 2023
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
104
2
0
22 Dec 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
57
2
0
07 May 2022
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
61
5
0
08 Apr 2021
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
Oliver R. A. Dunbar
Andrew B. Duncan
Andrew M. Stuart
Marie-Therese Wolfram
82
27
0
07 Apr 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
Babak Shahbaba
UQCV
BDL
84
16
0
11 Jan 2021
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
93
10
0
09 Nov 2020
Probabilistic Gradients for Fast Calibration of Differential Equation Models
Jon Cockayne
Andrew B. Duncan
63
5
0
03 Sep 2020
Calibrate, Emulate, Sample
Emmet Cleary
A. Garbuno-Iñigo
Shiwei Lan
T. Schneider
Andrew M. Stuart
112
105
0
10 Jan 2020
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success
R. Scalzo
D. Kohn
H. Olierook
G. Houseman
Rohitash Chandra
Mark Girolami
Sally Cripps
57
32
0
02 Dec 2018
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional Geometric Markov Chain Monte Carlo
Shiwei Lan
74
10
0
15 Jul 2018
Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography
L. Bruder
P. Koutsourelakis
MedIm
AI4CE
42
9
0
02 Mar 2018
Neural Network Gradient Hamiltonian Monte Carlo
Lingge Li
Andrew J Holbrook
Babak Shahbaba
Pierre Baldi
BDL
67
23
0
14 Nov 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
85
31
0
08 May 2017
Geometric adaptive Monte Carlo in random environment
Theodore Papamarkou
Alexey Lindo
E. Ford
43
4
0
29 Aug 2016
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
92
144
0
20 Jun 2016
Variational Hamiltonian Monte Carlo via Score Matching
Cheng Zhang
Babak Shahbaba
Hongkai Zhao
BDL
95
26
0
06 Feb 2016
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
161
53
0
03 Dec 2015
Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases
Cheng Zhang
Babak Shahbaba
Hongkai Zhao
126
32
0
18 Jun 2015
1