ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.06244
  4. Cited By
Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for
  Bayesian Inverse Problems
v1v2 (latest)

Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems

22 July 2015
Shiwei Lan
T. Bui-Thanh
M. Christie
Mark Girolami
ArXiv (abs)PDFHTML

Papers citing "Emulation of Higher-Order Tensors in Manifold Monte Carlo Methods for Bayesian Inverse Problems"

23 / 23 papers shown
Title
Are Statistical Methods Obsolete in the Era of Deep Learning?
Are Statistical Methods Obsolete in the Era of Deep Learning?
Skyler Wu
Shihao Yang
S. C. Kou
19
0
0
27 May 2025
Sacred and Profane: from the Involutive Theory of MCMC to Helpful
  Hamiltonian Hacks
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
63
0
0
22 Oct 2024
Warped geometric information on the optimisation of Euclidean functions
Warped geometric information on the optimisation of Euclidean functions
M. Hartmann
Bernardo Williams
Hanlin Yu
Mark Girolami
Alessandro Barp
Arto Klami
81
3
0
16 Aug 2023
On the surprising effectiveness of a simple matrix exponential
  derivative approximation, with application to global SARS-CoV-2
On the surprising effectiveness of a simple matrix exponential derivative approximation, with application to global SARS-CoV-2
G. Didier
N. Glatt-Holtz
Andrew J Holbrook
Andrew F. Magee
M. Suchard
57
4
0
28 Jun 2023
Random-effects substitution models for phylogenetics via scalable
  gradient approximations
Random-effects substitution models for phylogenetics via scalable gradient approximations
Andrew F. Magee
Andrew J Holbrook
J. Pekar
Itzue W. Caviedes-Solis
IV FredrickA.Matsen
G. Baele
J. Wertheim
Xiang Ji
P. Lemey
M. Suchard
41
5
0
23 Mar 2023
Parameter Inference based on Gaussian Processes Informed by Nonlinear
  Partial Differential Equations
Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
Zhao-Xia Li
Shih-Feng Yang
Jeff Wu
104
2
0
22 Dec 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net
  Kernels: Comparison to Bayesian Neural Networks, Application to Topology
  Optimization
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
57
2
0
07 May 2022
Approximate Bayesian inference from noisy likelihoods with Gaussian
  process emulated MCMC
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC
Marko Jarvenpaa
J. Corander
61
5
0
08 Apr 2021
Ensemble Inference Methods for Models With Noisy and Expensive
  Likelihoods
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
Oliver R. A. Dunbar
Andrew B. Duncan
Andrew M. Stuart
Marie-Therese Wolfram
82
27
0
07 Apr 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
  using Deep Neural Networks
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
Babak Shahbaba
UQCVBDL
84
16
0
11 Jan 2021
On the accept-reject mechanism for Metropolis-Hastings algorithms
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
93
10
0
09 Nov 2020
Probabilistic Gradients for Fast Calibration of Differential Equation
  Models
Probabilistic Gradients for Fast Calibration of Differential Equation Models
Jon Cockayne
Andrew B. Duncan
63
5
0
03 Sep 2020
Calibrate, Emulate, Sample
Calibrate, Emulate, Sample
Emmet Cleary
A. Garbuno-Iñigo
Shiwei Lan
T. Schneider
Andrew M. Stuart
112
105
0
10 Jan 2020
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical
  inversions with Obsidian v0.1.2: Setting up for success
Efficiency and robustness in Monte Carlo sampling of 3-D geophysical inversions with Obsidian v0.1.2: Setting up for success
R. Scalzo
D. Kohn
H. Olierook
G. Houseman
Rohitash Chandra
Mark Girolami
Sally Cripps
57
32
0
02 Dec 2018
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional
  Geometric Markov Chain Monte Carlo
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional Geometric Markov Chain Monte Carlo
Shiwei Lan
74
10
0
15 Jul 2018
Beyond black-boxes in Bayesian inverse problems and model validation:
  applications in solid mechanics of elastography
Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography
L. Bruder
P. Koutsourelakis
MedImAI4CE
42
9
0
02 Mar 2018
Neural Network Gradient Hamiltonian Monte Carlo
Neural Network Gradient Hamiltonian Monte Carlo
Lingge Li
Andrew J Holbrook
Babak Shahbaba
Pierre Baldi
BDL
67
23
0
14 Nov 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
85
31
0
08 May 2017
Geometric adaptive Monte Carlo in random environment
Geometric adaptive Monte Carlo in random environment
Theodore Papamarkou
Alexey Lindo
E. Ford
43
4
0
29 Aug 2016
Geometric MCMC for Infinite-Dimensional Inverse Problems
Geometric MCMC for Infinite-Dimensional Inverse Problems
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
92
144
0
20 Jun 2016
Variational Hamiltonian Monte Carlo via Score Matching
Variational Hamiltonian Monte Carlo via Score Matching
Cheng Zhang
Babak Shahbaba
Hongkai Zhao
BDL
95
26
0
06 Feb 2016
Probabilistic Integration: A Role in Statistical Computation?
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
161
53
0
03 Dec 2015
Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with
  Random Bases
Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases
Cheng Zhang
Babak Shahbaba
Hongkai Zhao
137
32
0
18 Jun 2015
1