ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.01240
  4. Cited By
Train faster, generalize better: Stability of stochastic gradient
  descent

Train faster, generalize better: Stability of stochastic gradient descent

3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
ArXivPDFHTML

Papers citing "Train faster, generalize better: Stability of stochastic gradient descent"

50 / 199 papers shown
Title
Resampling Sensitivity of High-Dimensional PCA
Resampling Sensitivity of High-Dimensional PCA
Haoyu Wang
21
0
0
30 Dec 2022
On the Overlooked Structure of Stochastic Gradients
On the Overlooked Structure of Stochastic Gradients
Zeke Xie
Qian-Yuan Tang
Mingming Sun
P. Li
25
6
0
05 Dec 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of
  SGD via Training Trajectories and via Terminal States
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
27
10
0
19 Nov 2022
On the Algorithmic Stability and Generalization of Adaptive Optimization
  Methods
On the Algorithmic Stability and Generalization of Adaptive Optimization Methods
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabás Póczos
ODL
AI4CE
15
2
0
08 Nov 2022
Do highly over-parameterized neural networks generalize since bad
  solutions are rare?
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
22
1
0
07 Nov 2022
Distributed DP-Helmet: Scalable Differentially Private Non-interactive
  Averaging of Single Layers
Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers
Moritz Kirschte
Sebastian Meiser
Saman Ardalan
Esfandiar Mohammadi
FedML
29
0
0
03 Nov 2022
Optimal Algorithms for Stochastic Complementary Composite Minimization
Optimal Algorithms for Stochastic Complementary Composite Minimization
Alexandre d’Aspremont
Cristóbal Guzmán
Clément Lezane
25
3
0
03 Nov 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Di Wang
Jinhui Xu
29
0
0
03 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
24
30
0
03 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple
  Perturbations with Its Stability Analysis
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
31
7
0
02 Oct 2022
Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
  with List Stability
Exploring the Algorithm-Dependent Generalization of AUPRC Optimization with List Stability
Peisong Wen
Qianqian Xu
Zhiyong Yang
Yuan He
Qingming Huang
53
10
0
27 Sep 2022
On the Stability Analysis of Open Federated Learning Systems
On the Stability Analysis of Open Federated Learning Systems
Youbang Sun
H. Fernando
Tianyi Chen
Shahin Shahrampour
FedML
29
1
0
25 Sep 2022
Stability and Generalization for Markov Chain Stochastic Gradient
  Methods
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang
Yunwen Lei
Yiming Ying
Ding-Xuan Zhou
16
18
0
16 Sep 2022
On Generalization of Decentralized Learning with Separable Data
On Generalization of Decentralized Learning with Separable Data
Hossein Taheri
Christos Thrampoulidis
FedML
27
10
0
15 Sep 2022
Differentially Private Stochastic Gradient Descent with Low-Noise
Differentially Private Stochastic Gradient Descent with Low-Noise
Puyu Wang
Yunwen Lei
Yiming Ying
Ding-Xuan Zhou
FedML
43
5
0
09 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
26
4
0
06 Sep 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient
  Method for Distributed Learning in Computing Clusters
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
25
1
0
17 Aug 2022
Uniform Stability for First-Order Empirical Risk Minimization
Uniform Stability for First-Order Empirical Risk Minimization
Amit Attia
Tomer Koren
18
5
0
17 Jul 2022
Bootstrap State Representation using Style Transfer for Better
  Generalization in Deep Reinforcement Learning
Bootstrap State Representation using Style Transfer for Better Generalization in Deep Reinforcement Learning
Md Masudur Rahman
Yexiang Xue
OffRL
23
4
0
15 Jul 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
69
27
0
17 Jun 2022
Trajectory-dependent Generalization Bounds for Deep Neural Networks via
  Fractional Brownian Motion
Trajectory-dependent Generalization Bounds for Deep Neural Networks via Fractional Brownian Motion
Chengli Tan
Jiang Zhang
Junmin Liu
35
1
0
09 Jun 2022
Multi-class Classification with Fuzzy-feature Observations: Theory and
  Algorithms
Multi-class Classification with Fuzzy-feature Observations: Theory and Algorithms
Guangzhi Ma
Jie Lu
Feng Liu
Zhen Fang
Guangquan Zhang
8
6
0
09 Jun 2022
Subject Membership Inference Attacks in Federated Learning
Subject Membership Inference Attacks in Federated Learning
Anshuman Suri
Pallika H. Kanani
Virendra J. Marathe
Daniel W. Peterson
30
25
0
07 Jun 2022
Dimension Independent Generalization of DP-SGD for Overparameterized
  Smooth Convex Optimization
Dimension Independent Generalization of DP-SGD for Overparameterized Smooth Convex Optimization
Yi-An Ma
T. V. Marinov
Tong Zhang
17
8
0
03 Jun 2022
AANG: Automating Auxiliary Learning
AANG: Automating Auxiliary Learning
Lucio Dery
Paul Michel
M. Khodak
Graham Neubig
Ameet Talwalkar
36
9
0
27 May 2022
Selective Classification Via Neural Network Training Dynamics
Selective Classification Via Neural Network Training Dynamics
Stephan Rabanser
Anvith Thudi
Kimia Hamidieh
Adam Dziedzic
Nicolas Papernot
24
21
0
26 May 2022
Learning from time-dependent streaming data with online stochastic
  algorithms
Learning from time-dependent streaming data with online stochastic algorithms
Antoine Godichon-Baggioni
Nicklas Werge
Olivier Wintenberger
22
3
0
25 May 2022
Uniform Generalization Bound on Time and Inverse Temperature for
  Gradient Descent Algorithm and its Application to Analysis of Simulated
  Annealing
Uniform Generalization Bound on Time and Inverse Temperature for Gradient Descent Algorithm and its Application to Analysis of Simulated Annealing
Keisuke Suzuki
AI4CE
30
0
0
25 May 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for
  Full-Batch GD
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
40
17
0
26 Apr 2022
Sharper Utility Bounds for Differentially Private Models
Sharper Utility Bounds for Differentially Private Models
Yilin Kang
Yong Liu
Jian Li
Weiping Wang
FedML
26
3
0
22 Apr 2022
Stability and Risk Bounds of Iterative Hard Thresholding
Stability and Risk Bounds of Iterative Hard Thresholding
Xiao-Tong Yuan
P. Li
37
12
0
17 Mar 2022
Stability vs Implicit Bias of Gradient Methods on Separable Data and
  Beyond
Stability vs Implicit Bias of Gradient Methods on Separable Data and Beyond
Matan Schliserman
Tomer Koren
22
23
0
27 Feb 2022
Benign Underfitting of Stochastic Gradient Descent
Benign Underfitting of Stochastic Gradient Descent
Tomer Koren
Roi Livni
Yishay Mansour
Uri Sherman
MLT
15
13
0
27 Feb 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for
  Generalized Linear Stochastic Convex Optimization
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
22
6
0
27 Feb 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
20
8
0
18 Feb 2022
Differentially Private SGDA for Minimax Problems
Differentially Private SGDA for Minimax Problems
Zhenhuan Yang
Shu Hu
Yunwen Lei
Kush R. Varshney
Siwei Lyu
Yiming Ying
36
19
0
22 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning
  Optimization Landscape
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
25
34
0
20 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin
  Dynamics
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
23
8
0
09 Jan 2022
Stable Conformal Prediction Sets
Stable Conformal Prediction Sets
Eugène Ndiaye
35
20
0
19 Dec 2021
Communication-Efficient Distributed Learning via Sparse and Adaptive
  Stochastic Gradient
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
16
0
0
08 Dec 2021
Black-box tests for algorithmic stability
Black-box tests for algorithmic stability
Byol Kim
Rina Foygel Barber
AAML
17
13
0
30 Nov 2021
Multi-fidelity Stability for Graph Representation Learning
Multi-fidelity Stability for Graph Representation Learning
Yihan He
Joan Bruna
17
0
0
25 Nov 2021
Subspace Adversarial Training
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
38
56
0
24 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
15
3
0
19 Nov 2021
Training Neural Networks with Fixed Sparse Masks
Training Neural Networks with Fixed Sparse Masks
Yi-Lin Sung
Varun Nair
Colin Raffel
FedML
18
196
0
18 Nov 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm
  with Momentum
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
24
8
0
11 Nov 2021
Differentially Private Coordinate Descent for Composite Empirical Risk
  Minimization
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
27
14
0
22 Oct 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning
  Approach
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach
Qitian Wu
Chenxiao Yang
Junchi Yan
19
32
0
09 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic
  Bounds and Implications
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
37
22
0
07 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in
  Generalization
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
35
28
0
06 Oct 2021
Previous
1234
Next