Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.01240
Cited By
Train faster, generalize better: Stability of stochastic gradient descent
3 September 2015
Moritz Hardt
Benjamin Recht
Y. Singer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Train faster, generalize better: Stability of stochastic gradient descent"
50 / 199 papers shown
Title
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Naresh Boddeti
34
5
0
12 Sep 2021
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization
Yao Shu
Shaofeng Cai
Zhongxiang Dai
Beng Chin Ooi
K. H. Low
16
43
0
02 Sep 2021
Stability and Generalization for Randomized Coordinate Descent
Puyu Wang
Liang Wu
Yunwen Lei
16
7
0
17 Aug 2021
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
Chiyuan Zhang
M. Raghu
Jon M. Kleinberg
Samy Bengio
OOD
24
30
0
27 Jul 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
20
13
0
19 Jul 2021
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
20
25
0
17 Jun 2021
Learning subtree pattern importance for Weisfeiler-Lehmanbased graph kernels
Dai Hai Nguyen
Canh Hao Nguyen
Hiroshi Mamitsuka
14
6
0
08 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
28
30
0
01 May 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
19
29
0
31 Mar 2021
Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Medha Atre
B. Jha
Ashwini Rao
18
11
0
16 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
30
412
0
14 Mar 2021
Reframing Neural Networks: Deep Structure in Overcomplete Representations
Calvin Murdock
George Cazenavette
Simon Lucey
BDL
35
4
0
10 Mar 2021
Nonlinear Projection Based Gradient Estimation for Query Efficient Blackbox Attacks
Huichen Li
Linyi Li
Xiaojun Xu
Xiaolu Zhang
Shuang Yang
Bo-wen Li
AAML
20
17
0
25 Feb 2021
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability
Alec Farid
Anirudha Majumdar
24
34
0
12 Feb 2021
Stability of SGD: Tightness Analysis and Improved Bounds
Yikai Zhang
Wenjia Zhang
Sammy Bald
Vamsi Pingali
Chao Chen
Mayank Goswami
MLT
19
36
0
10 Feb 2021
Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
23
49
0
07 Feb 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
16
24
0
17 Jan 2021
Mixed-Privacy Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Avinash Ravichandran
M. Polito
Stefano Soatto
CLL
MU
127
159
0
24 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
A. Gretton
S. Mohamed
AAML
25
48
0
14 Dec 2020
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
29
57
0
17 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
36
23
0
27 Oct 2020
Deep generative demixing: Recovering Lipschitz signals from noisy subgaussian mixtures
Aaron Berk
14
0
0
13 Oct 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
21
158
0
07 Sep 2020
Hybrid Differentially Private Federated Learning on Vertically Partitioned Data
Chang Wang
Jian Liang
Mingkai Huang
Bing Bai
Kun Bai
Hao Li
FedML
15
39
0
06 Sep 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
31
50
0
08 Jul 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses
Raef Bassily
Vitaly Feldman
Cristóbal Guzmán
Kunal Talwar
MLT
6
192
0
12 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
35
0
08 Jun 2020
Private Stochastic Convex Optimization: Optimal Rates in Linear Time
Vitaly Feldman
Tomer Koren
Kunal Talwar
6
203
0
10 May 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
36
9
0
11 Apr 2020
Understanding Self-Training for Gradual Domain Adaptation
Ananya Kumar
Tengyu Ma
Percy Liang
CLL
TTA
28
226
0
26 Feb 2020
Coherent Gradients: An Approach to Understanding Generalization in Gradient Descent-based Optimization
S. Chatterjee
ODL
OOD
11
48
0
25 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Performative Prediction
Juan C. Perdomo
Tijana Zrnic
Celestine Mendler-Dünner
Moritz Hardt
20
307
0
16 Feb 2020
Statistical Learning with Conditional Value at Risk
Tasuku Soma
Yuichi Yoshida
8
38
0
14 Feb 2020
A Diffusion Theory For Deep Learning Dynamics: Stochastic Gradient Descent Exponentially Favors Flat Minima
Zeke Xie
Issei Sato
Masashi Sugiyama
ODL
20
17
0
10 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Ming-Yu Liu
ODL
197
57
0
09 Feb 2020
Reasoning About Generalization via Conditional Mutual Information
Thomas Steinke
Lydia Zakynthinou
15
159
0
24 Jan 2020
Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks
Difan Zou
Ziniu Hu
Yewen Wang
Song Jiang
Yizhou Sun
Quanquan Gu
GNN
23
277
0
17 Nov 2019
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
110
146
0
06 Nov 2019
Sharper bounds for uniformly stable algorithms
Olivier Bousquet
Yegor Klochkov
Nikita Zhivotovskiy
16
120
0
17 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
24
2
0
03 Oct 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
8
236
0
27 Aug 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
C. Caramanis
Sanjay Shakkottai
28
3
0
23 Jul 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
21
481
0
12 Jun 2019
Importance Resampling for Off-policy Prediction
M. Schlegel
Wesley Chung
Daniel Graves
Jian Qian
Martha White
OffRL
6
41
0
11 Jun 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Orthogonal Deep Neural Networks
K. Jia
Shuai Li
Yuxin Wen
Tongliang Liu
Dacheng Tao
28
131
0
15 May 2019
Previous
1
2
3
4
Next