ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.06321
  4. Cited By
Evaluating the visualization of what a Deep Neural Network has learned

Evaluating the visualization of what a Deep Neural Network has learned

21 September 2015
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
    XAI
ArXivPDFHTML

Papers citing "Evaluating the visualization of what a Deep Neural Network has learned"

50 / 511 papers shown
Title
iNNvestigate neural networks!
iNNvestigate neural networks!
Maximilian Alber
Sebastian Lapuschkin
P. Seegerer
Miriam Hagele
Kristof T. Schütt
G. Montavon
Wojciech Samek
K. Müller
Sven Dähne
Pieter-Jan Kindermans
13
348
0
13 Aug 2018
Out of the Black Box: Properties of deep neural networks and their
  applications
Out of the Black Box: Properties of deep neural networks and their applications
Nizar Ouarti
D. Carmona
FAtt
AAML
6
3
0
10 Aug 2018
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep
  Neural Networks
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks
Dasom Seo
Kanghan Oh
Il-Seok Oh
FAtt
22
23
0
31 Jul 2018
Layer-wise Relevance Propagation for Explainable Recommendations
Layer-wise Relevance Propagation for Explainable Recommendations
Homanga Bharadhwaj
FAtt
14
8
0
17 Jul 2018
AudioMNIST: Exploring Explainable Artificial Intelligence for Audio
  Analysis on a Simple Benchmark
AudioMNIST: Exploring Explainable Artificial Intelligence for Audio Analysis on a Simple Benchmark
Sören Becker
Johanna Vielhaben
M. Ackermann
Klaus-Robert Muller
Sebastian Lapuschkin
Wojciech Samek
XAI
24
94
0
09 Jul 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
31
670
0
28 Jun 2018
Quantum-chemical insights from interpretable atomistic neural networks
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
25
31
0
27 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
50
933
0
20 Jun 2018
Biased Embeddings from Wild Data: Measuring, Understanding and Removing
Biased Embeddings from Wild Data: Measuring, Understanding and Removing
Adam Sutton
Thomas Lansdall-Welfare
N. Cristianini
18
23
0
16 Jun 2018
Understanding Patch-Based Learning by Explaining Predictions
Understanding Patch-Based Learning by Explaining Predictions
Christopher J. Anders
G. Montavon
Wojciech Samek
K. Müller
UQCV
FAtt
30
6
0
11 Jun 2018
How Important Is a Neuron?
How Important Is a Neuron?
Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
FAtt
GNN
22
128
0
30 May 2018
Towards computational fluorescence microscopy: Machine learning-based
  integrated prediction of morphological and molecular tumor profiles
Towards computational fluorescence microscopy: Machine learning-based integrated prediction of morphological and molecular tumor profiles
Alexander Binder
M. Bockmayr
Miriam Hagele
S. Wienert
Daniel Heim
...
M. Dietel
A. Hocke
C. Denkert
K. Müller
Frederick Klauschen
AI4CE
8
27
0
28 May 2018
VisualBackProp for learning using privileged information with CNNs
VisualBackProp for learning using privileged information with CNNs
Devansh Bisla
A. Choromańska
12
2
0
24 May 2018
A Theoretical Explanation for Perplexing Behaviors of
  Backpropagation-based Visualizations
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
Weili Nie
Yang Zhang
Ankit B. Patel
FAtt
13
151
0
18 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
Detecting Linguistic Characteristics of Alzheimer's Dementia by
  Interpreting Neural Models
Detecting Linguistic Characteristics of Alzheimer's Dementia by Interpreting Neural Models
Sweta Karlekar
Tong Niu
Joey Tianyi Zhou
10
107
0
17 Apr 2018
Understanding Autoencoders with Information Theoretic Concepts
Understanding Autoencoders with Information Theoretic Concepts
Shujian Yu
José C. Príncipe
AI4CE
49
132
0
30 Mar 2018
Visualizing Convolutional Neural Network Protein-Ligand Scoring
Visualizing Convolutional Neural Network Protein-Ligand Scoring
Joshua E. Hochuli
Alec Helbling
Tamar Skaist
Matthew Ragoza
D. Koes
FAtt
16
65
0
06 Mar 2018
Improved Explainability of Capsule Networks: Relevance Path by Agreement
Improved Explainability of Capsule Networks: Relevance Path by Agreement
Atefeh Shahroudnejad
Arash Mohammadi
Konstantinos N. Plataniotis
AAML
MedIm
6
62
0
27 Feb 2018
Do WaveNets Dream of Acoustic Waves?
Do WaveNets Dream of Acoustic Waves?
Kanru Hua
24
1
0
23 Feb 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
15
585
0
21 Feb 2018
Influence-Directed Explanations for Deep Convolutional Networks
Influence-Directed Explanations for Deep Convolutional Networks
Klas Leino
S. Sen
Anupam Datta
Matt Fredrikson
Linyi Li
TDI
FAtt
25
75
0
11 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
22
3,903
0
06 Feb 2018
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in
  Algorithmic Decisions
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions
Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
N. Shadbolt
FaML
10
514
0
31 Jan 2018
Deep Reinforcement Learning using Capsules in Advanced Game Environments
Deep Reinforcement Learning using Capsules in Advanced Game Environments
Per-Arne Andersen
18
16
0
29 Jan 2018
Weakly Supervised Object Detection with Pointwise Mutual Information
Weakly Supervised Object Detection with Pointwise Mutual Information
René Grzeszick
Sebastian Sudholt
G. Fink
WSOD
30
1
0
26 Jan 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next
  Frontiers
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
41
536
0
21 Jan 2018
Evaluating neural network explanation methods using hybrid documents and
  morphological agreement
Evaluating neural network explanation methods using hybrid documents and morphological agreement
Nina Pörner
Benjamin Roth
Hinrich Schütze
6
9
0
19 Jan 2018
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
Towards better understanding of gradient-based attribution methods for
  Deep Neural Networks
Towards better understanding of gradient-based attribution methods for Deep Neural Networks
Marco Ancona
Enea Ceolini
Cengiz Öztireli
Markus Gross
FAtt
27
145
0
16 Nov 2017
The (Un)reliability of saliency methods
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
42
678
0
02 Nov 2017
Learning Functional Causal Models with Generative Neural Networks
Learning Functional Causal Models with Generative Neural Networks
Hugo Jair Escalante
Sergio Escalera
Xavier Baro
Isabelle M Guyon
Umut Güçlü
Marcel van Gerven
CML
BDL
20
107
0
15 Sep 2017
Machine learning methods for histopathological image analysis
Machine learning methods for histopathological image analysis
D. Komura
S. Ishikawa
11
693
0
04 Sep 2017
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
34
1,172
0
28 Aug 2017
Understanding and Comparing Deep Neural Networks for Age and Gender
  Classification
Understanding and Comparing Deep Neural Networks for Age and Gender Classification
Sebastian Lapuschkin
Alexander Binder
K. Müller
Wojciech Samek
CVBM
21
135
0
25 Aug 2017
Towards Visual Explanations for Convolutional Neural Networks via Input
  Resampling
Towards Visual Explanations for Convolutional Neural Networks via Input Resampling
Benjamin J. Lengerich
Sandeep Konam
Eric P. Xing
Stephanie Rosenthal
Manuela Veloso
FAtt
XAI
18
5
0
30 Jul 2017
Weakly-supervised localization of diabetic retinopathy lesions in
  retinal fundus images
Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images
Waleed M. Gondal
Jan M. Köhler
René Grzeszick
G. Fink
M. Hirsch
MedIm
24
138
0
29 Jun 2017
Between Homomorphic Signal Processing and Deep Neural Networks:
  Constructing Deep Algorithms for Polyphonic Music Transcription
Between Homomorphic Signal Processing and Deep Neural Networks: Constructing Deep Algorithms for Polyphonic Music Transcription
Li Su
10
21
0
26 Jun 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
14
352
0
22 Jun 2017
Learning how to explain neural networks: PatternNet and
  PatternAttribution
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
21
338
0
16 May 2017
Clothing and People - A Social Signal Processing Perspective
Clothing and People - A Social Signal Processing Perspective
Maedeh Aghaei
Federico Parezzan
Mariella Dimiccoli
P. Radeva
Marco Cristani
11
9
0
07 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
21
5,847
0
04 Mar 2017
"What is Relevant in a Text Document?": An Interpretable Machine
  Learning Approach
"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
17
288
0
23 Dec 2016
Interpreting the Predictions of Complex ML Models by Layer-wise
  Relevance Propagation
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation
Wojciech Samek
G. Montavon
Alexander Binder
Sebastian Lapuschkin
K. Müller
FAtt
AI4CE
24
48
0
24 Nov 2016
Feature Importance Measure for Non-linear Learning Algorithms
Feature Importance Measure for Non-linear Learning Algorithms
M. M. Vidovic
Nico Görnitz
K. Müller
Marius Kloft
FAtt
16
39
0
22 Nov 2016
VisualBackProp: efficient visualization of CNNs
VisualBackProp: efficient visualization of CNNs
Mariusz Bojarski
A. Choromańska
K. Choromanski
Bernhard Firner
L. Jackel
Urs Muller
Karol Zieba
FAtt
28
74
0
16 Nov 2016
Gradients of Counterfactuals
Gradients of Counterfactuals
Mukund Sundararajan
Ankur Taly
Qiqi Yan
FAtt
13
105
0
08 Nov 2016
Deep image mining for diabetic retinopathy screening
Deep image mining for diabetic retinopathy screening
G. Quellec
K. Charrière
Yassine Boudi
B. Cochener
M. Lamard
MedIm
36
413
0
22 Oct 2016
Interpreting Neural Networks to Improve Politeness Comprehension
Interpreting Neural Networks to Improve Politeness Comprehension
Malika Aubakirova
Joey Tianyi Zhou
FAtt
MILM
11
56
0
09 Oct 2016
Previous
123...10119
Next