Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.00175
Cited By
FireCaffe: near-linear acceleration of deep neural network training on compute clusters
31 October 2015
F. Iandola
Khalid Ashraf
Matthew W. Moskewicz
Kurt Keutzer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FireCaffe: near-linear acceleration of deep neural network training on compute clusters"
28 / 28 papers shown
Title
Analysing the Influence of Attack Configurations on the Reconstruction of Medical Images in Federated Learning
M. Dahlgaard
Morten Wehlast Jorgensen
N. Fuglsang
Hiba Nassar
FedML
AAML
28
2
0
25 Apr 2022
FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction
Liang Gao
H. Fu
Li Li
Yingwen Chen
Minghua Xu
Chengzhong Xu
FedML
21
242
0
22 Mar 2022
FA-GAN: Fused Attentive Generative Adversarial Networks for MRI Image Super-Resolution
M. Jiang
Min Zhi
Liying Wei
Xiaocheng Yang
Jucheng Zhang
Yongming Li
Pin Wang
Jiahao Huang
Guang Yang
MedIm
17
83
0
09 Aug 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
28
13
0
01 Jun 2021
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
18
11
0
23 Apr 2021
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
23
459
0
15 Apr 2021
Towards a Scalable and Distributed Infrastructure for Deep Learning Applications
Bita Hasheminezhad
S. Shirzad
Nanmiao Wu
Patrick Diehl
Hannes Schulz
Hartmut Kaiser
GNN
AI4CE
11
4
0
06 Oct 2020
PSO-PS: Parameter Synchronization with Particle Swarm Optimization for Distributed Training of Deep Neural Networks
Qing Ye
Y. Han
Yanan Sun
Jiancheng Lv
23
3
0
06 Sep 2020
CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity Edge Devices
Parth Mannan
A. Samajdar
T. Krishna
15
2
0
27 Aug 2020
ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network
David Gschwend
13
64
0
14 May 2020
Characterizing and Modeling Distributed Training with Transient Cloud GPU Servers
Shijian Li
R. Walls
Tian Guo
15
23
0
07 Apr 2020
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
S. A. Jacobs
B. Van Essen
D. Hysom
Jae-Seung Yeom
Tim Moon
...
J. Gaffney
Tom Benson
Peter B. Robinson
L. Peterson
B. Spears
BDL
AI4CE
14
17
0
05 Oct 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
17
316
0
31 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
13
159
0
23 May 2019
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
Yang You
Jing Li
Sashank J. Reddi
Jonathan Hseu
Sanjiv Kumar
Srinadh Bhojanapalli
Xiaodan Song
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
ODL
28
978
0
01 Apr 2019
swCaffe: a Parallel Framework for Accelerating Deep Learning Applications on Sunway TaihuLight
Jiarui Fang
Liandeng Li
H. Fu
Jinlei Jiang
Wenlai Zhao
Conghui He
Xin You
Guangwen Yang
21
30
0
16 Mar 2019
Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training
Youjie Li
Hang Qiu
Songze Li
A. Avestimehr
N. Kim
A. Schwing
FedML
16
103
0
08 Nov 2018
Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks
Kang Liu
Brendan Dolan-Gavitt
S. Garg
AAML
4
1,017
0
30 May 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
22
701
0
26 Feb 2018
Efficient Training of Convolutional Neural Nets on Large Distributed Systems
Sameer Kumar
D. Sreedhar
Vaibhav Saxena
Yogish Sabharwal
Ashish Verma
25
4
0
02 Nov 2017
Distributed Training Large-Scale Deep Architectures
Shang-Xuan Zou
Chun-Yen Chen
Jui-Lin Wu
Chun-Nan Chou
Chia-Chin Tsao
Kuan-Chieh Tung
Ting-Wei Lin
Cheng-Lung Sung
Edward Y. Chang
16
22
0
10 Aug 2017
Scaling Deep Learning on GPU and Knights Landing clusters
Yang You
A. Buluç
J. Demmel
GNN
15
75
0
09 Aug 2017
Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?
A. A. Awan
Ching-Hsiang Chu
Hari Subramoni
D. Panda
GNN
33
46
0
28 Jul 2017
How to scale distributed deep learning?
Peter H. Jin
Qiaochu Yuan
F. Iandola
Kurt Keutzer
3DH
16
136
0
14 Nov 2016
Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability
J. Keuper
Franz-Josef Pfreundt
GNN
47
97
0
22 Sep 2016
A Convolutional Autoencoder for Multi-Subject fMRI Data Aggregation
Po-Hsuan Chen
Xia Zhu
Hejia Zhang
Javier S. Turek
Janice Chen
Theodore L. Willke
Uri Hasson
Peter J. Ramadge
16
24
0
17 Aug 2016
Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs
Stefan Hadjis
Ce Zhang
Ioannis Mitliagkas
Dan Iter
Christopher Ré
11
65
0
14 Jun 2016
The Effects of Hyperparameters on SGD Training of Neural Networks
Thomas Breuel
64
63
0
12 Aug 2015
1