Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.01942
Cited By
Stop Wasting My Gradients: Practical SVRG
5 November 2015
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stop Wasting My Gradients: Practical SVRG"
38 / 38 papers shown
Title
An Effective Dynamic Gradient Calibration Method for Continual Learning
Weichen Lin
Jiaxiang Chen
Ru Huang
Huihua Ding
CLL
46
0
0
30 Jul 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
47
0
0
19 Jul 2024
Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning Problems
Shigeng Sun
Yuchen Xie
18
3
0
17 May 2023
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
SONIA: A Symmetric Blockwise Truncated Optimization Algorithm
Majid Jahani
M. Nazari
R. Tappenden
A. Berahas
Martin Takávc
ODL
19
10
0
06 Jun 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
29
181
0
24 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji
Zhe Wang
Bowen Weng
Yi Zhou
Wei Zhang
Yingbin Liang
ODL
18
5
0
21 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
33
83
0
18 Sep 2019
Reducing the variance in online optimization by transporting past gradients
Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
26
28
0
08 Jun 2019
An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient
Pan Xu
F. Gao
Quanquan Gu
21
93
0
29 May 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
18
139
0
15 Feb 2019
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
19
31
0
05 Oct 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Stochastic Variance-Reduced Policy Gradient
Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
21
174
0
14 Jun 2018
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with
β
β
β
-Divergences
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
25
56
0
06 Jun 2018
Stochastic Zeroth-order Optimization via Variance Reduction method
L. Liu
Minhao Cheng
Cho-Jui Hsieh
Dacheng Tao
24
19
0
30 May 2018
Distributed Stochastic Optimization via Adaptive SGD
Ashok Cutkosky
R. Busa-Fekete
FedML
35
21
0
16 Feb 2018
AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks
Aditya Devarakonda
Maxim Naumov
M. Garland
ODL
24
136
0
06 Dec 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
33
13
0
04 Aug 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
32
13
0
31 Oct 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
37
62
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
71
1,877
0
08 Oct 2016
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
53
900
0
05 Oct 2016
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
23
178
0
27 Sep 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
29
96
0
12 Sep 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
23
210
0
20 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
45
182
0
13 May 2016
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
27
13
0
22 Mar 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
32
113
0
06 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
32
16
0
30 Jan 2016
Online Batch Selection for Faster Training of Neural Networks
I. Loshchilov
Frank Hutter
ODL
53
298
0
19 Nov 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
37
195
0
05 Jun 2015
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
1