ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06890
  4. Cited By
Gaussian Process Planning with Lipschitz Continuous Reward Functions:
  Towards Unifying Bayesian Optimization, Active Learning, and Beyond

Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond

21 November 2015
Chun Kai Ling
K. H. Low
Patrick Jaillet
ArXiv (abs)PDFHTML

Papers citing "Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond"

31 / 31 papers shown
Long-Term Autonomous Ocean Monitoring with Streaming Samples
Long-Term Autonomous Ocean Monitoring with Streaming Samples
Weizhe (Wesley) Chen
Lantao Liu
154
4
0
11 Jun 2023
Do-AIQ: A Design-of-Experiment Approach to Quality Evaluation of AI
  Mislabel Detection Algorithm
Do-AIQ: A Design-of-Experiment Approach to Quality Evaluation of AI Mislabel Detection Algorithm
J. Lian
K. Choi
B. Veeramani
A. Hu
L. Freeman
Edward Bowen
X. Deng
162
0
0
21 Aug 2022
Bayesian Optimization under Stochastic Delayed Feedback
Bayesian Optimization under Stochastic Delayed FeedbackInternational Conference on Machine Learning (ICML), 2022
Arun Verma
Zhongxiang Dai
Bryan Kian Hsiang Low
219
15
0
19 Jun 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVsIEEE Transactions on Wireless Communications (TWC), 2022
Raj K. Shrestha
Daniel Romero
S. Chepuri
199
68
0
11 Jan 2022
Informative Planning in the Presence of Outliers
Informative Planning in the Presence of OutliersIEEE International Conference on Robotics and Automation (ICRA), 2021
Weizhe (Wesley) Chen
Lantao Liu
206
3
0
02 Nov 2021
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-makingNeural Information Processing Systems (NeurIPS), 2021
Wesley J. Maddox
Samuel Stanton
A. Wilson
209
37
0
28 Oct 2021
Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization
Trusted-Maximizers Entropy Search for Efficient Bayesian OptimizationConference on Uncertainty in Artificial Intelligence (UAI), 2021
Q. Nguyen
Zhaoxuan Wu
K. H. Low
Patrick Jaillet
185
12
0
30 Jul 2021
Targeted Active Learning for Bayesian Decision-Making
Targeted Active Learning for Bayesian Decision-Making
Louis Filstroff
Iiris Sundin
P. Mikkola
A. Tiulpin
Juuso Kylmäoja
Samuel Kaski
176
5
0
08 Jun 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Convolutional Normalizing Flows for Deep Gaussian ProcessesIEEE International Joint Conference on Neural Network (IJCNN), 2021
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
184
6
0
17 Apr 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive SurveyChina Communications (China Commun.), 2021
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
413
39
0
18 Mar 2021
Top-$k$ Ranking Bayesian Optimization
Top-kkk Ranking Bayesian OptimizationAAAI Conference on Artificial Intelligence (AAAI), 2020
Q. Nguyen
Sebastian Shenghong Tay
Bryan Kian Hsiang Low
Patrick Jaillet
193
27
0
19 Dec 2020
Efficient Exploration of Reward Functions in Inverse Reinforcement
  Learning via Bayesian Optimization
Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian OptimizationNeural Information Processing Systems (NeurIPS), 2020
Sreejith Balakrishnan
Q. Nguyen
Bryan Kian Hsiang Low
Harold Soh
198
31
0
17 Nov 2020
Private Outsourced Bayesian Optimization
Private Outsourced Bayesian OptimizationInternational Conference on Machine Learning (ICML), 2020
D. Kharkovskii
Zhongxiang Dai
K. H. Low
186
25
0
24 Oct 2020
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson SamplingNeural Information Processing Systems (NeurIPS), 2020
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
434
132
0
20 Oct 2020
Information-Driven Adaptive Sensing Based on Deep Reinforcement Learning
Information-Driven Adaptive Sensing Based on Deep Reinforcement LearningIoT (IoT), 2020
Abdulmajid Murad
F. Kraemer
Kerstin Bach
Gavin Taylor
83
25
0
08 Oct 2020
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret
  Learning in Games
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games
Zhongxiang Dai
Yizhou Chen
K. H. Low
Patrick Jaillet
Teck-Hua Ho
186
28
0
30 Jun 2020
Efficient Rollout Strategies for Bayesian Optimization
Efficient Rollout Strategies for Bayesian OptimizationConference on Uncertainty in Artificial Intelligence (UAI), 2020
E. Lee
David Eriksson
Bolong Cheng
M. McCourt
D. Bindel
264
25
0
24 Feb 2020
Nonmyopic Gaussian Process Optimization with Macro-Actions
Nonmyopic Gaussian Process Optimization with Macro-ActionsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
D. Kharkovskii
Chun Kai Ling
K. H. Low
198
19
0
22 Feb 2020
Learning rewards for robotic ultrasound scanning using probabilistic
  temporal ranking
Learning rewards for robotic ultrasound scanning using probabilistic temporal rankingAutonomous Robots (Auton. Robots), 2020
Michael G. Burke
Katie Lu
Daniel Angelov
Artūras Straižys
Craig Innes
Kartic Subr
S. Ramamoorthy
196
12
0
04 Feb 2020
Why Non-myopic Bayesian Optimization is Promising and How Far Should We
  Look-ahead? A Study via Rollout
Why Non-myopic Bayesian Optimization is Promising and How Far Should We Look-ahead? A Study via RolloutInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Xubo Yue
Raed Al Kontar
343
40
0
04 Nov 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2019
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
215
44
0
26 Oct 2019
Receding Horizon Curiosity
Receding Horizon CuriosityConference on Robot Learning (CoRL), 2019
M. Schultheis
Boris Belousov
Hany Abdulsamad
Jan Peters
128
15
0
08 Oct 2019
Information-Guided Robotic Maximum Seek-and-Sample in Partially
  Observable Continuous Environments
Information-Guided Robotic Maximum Seek-and-Sample in Partially Observable Continuous EnvironmentsIEEE Robotics and Automation Letters (RA-L), 2019
Genevieve Flaspohler
Victoria L. Preston
A. Michel
Yogesh A. Girdhar
Nicholas Roy
144
49
0
26 Sep 2019
BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design
BINOCULARS for Efficient, Nonmyopic Sequential Experimental DesignInternational Conference on Machine Learning (ICML), 2019
Shali Jiang
Henry Chai
Javier I. González
Roman Garnett
OffRL
272
54
0
10 Sep 2019
Learning a Spatial Field in Minimum Time with a Team of Robots
Learning a Spatial Field in Minimum Time with a Team of RobotsIEEE Transactions on robotics (TRO), 2019
Varun Suryan
Erfaun Noorani
123
31
0
04 Sep 2019
Towards Robust ResNet: A Small Step but A Giant Leap
Towards Robust ResNet: A Small Step but A Giant LeapInternational Joint Conference on Artificial Intelligence (IJCAI), 2019
Jingfeng Zhang
Bo Han
L. Wynter
K. H. Low
Mohan Kankanhalli
272
43
0
28 Feb 2019
Bayesian optimisation under uncertain inputs
Bayesian optimisation under uncertain inputs
Rafael Oliveira
Lionel Ott
F. Ramos
162
48
0
21 Feb 2019
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs
T. Hoang
Q. Hoang
Ruofei Ouyang
K. H. Low
242
59
0
19 Nov 2017
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in
  Large-Scale Distributed Cooperative Perception
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception
Ruofei Ouyang
K. H. Low
FedML
177
26
0
16 Nov 2017
Stochastic Variational Inference for Bayesian Sparse Gaussian Process
  Regression
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
352
24
0
01 Nov 2017
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Yehong Zhang
T. Hoang
K. H. Low
Mohan Kankanhalli
167
39
0
21 Nov 2015
1
Page 1 of 1