ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.07543
  4. Cited By
Convergent Learning: Do different neural networks learn the same
  representations?

Convergent Learning: Do different neural networks learn the same representations?

24 November 2015
Yixuan Li
J. Yosinski
Jeff Clune
Hod Lipson
J. Hopcroft
    SSL
ArXivPDFHTML

Papers citing "Convergent Learning: Do different neural networks learn the same representations?"

31 / 81 papers shown
Title
Do Input Gradients Highlight Discriminative Features?
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
23
57
0
25 Feb 2021
Visualizing Classification Structure of Large-Scale Classifiers
Visualizing Classification Structure of Large-Scale Classifiers
B. Alsallakh
Zhixin Yan
Shabnam Ghaffarzadegan
Zeng Dai
Liu Ren
FAtt
12
1
0
12 Jul 2020
An Investigation of the Weight Space to Monitor the Training Progress of
  Neural Networks
An Investigation of the Weight Space to Monitor the Training Progress of Neural Networks
Konstantin Schurholt
Damian Borth
32
3
0
18 Jun 2020
Transferable Perturbations of Deep Feature Distributions
Transferable Perturbations of Deep Feature Distributions
Nathan Inkawhich
Kevin J Liang
Lawrence Carin
Yiran Chen
AAML
30
84
0
27 Apr 2020
Towards Backward-Compatible Representation Learning
Towards Backward-Compatible Representation Learning
Yantao Shen
Yuanjun Xiong
W. Xia
Stefano Soatto
33
78
0
26 Mar 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
40
120
0
26 Mar 2020
Analyzing Visual Representations in Embodied Navigation Tasks
Analyzing Visual Representations in Embodied Navigation Tasks
Erik Wijmans
Julian Straub
Dhruv Batra
Irfan Essa
Judy Hoffman
Ari S. Morcos
17
2
0
12 Mar 2020
Untangling in Invariant Speech Recognition
Untangling in Invariant Speech Recognition
Cory Stephenson
J. Feather
Suchismita Padhy
Oguz H. Elibol
Hanlin Tang
Josh H. McDermott
SueYeon Chung
SSL
30
30
0
03 Mar 2020
Selectivity considered harmful: evaluating the causal impact of class
  selectivity in DNNs
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs
Matthew L. Leavitt
Ari S. Morcos
58
33
0
03 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
Modelling the influence of data structure on learning in neural
  networks: the hidden manifold model
Modelling the influence of data structure on learning in neural networks: the hidden manifold model
Sebastian Goldt
M. Mézard
Florent Krzakala
Lenka Zdeborová
BDL
29
51
0
25 Sep 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
186
640
0
19 Sep 2019
Similarity of Neural Network Representations Revisited
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
64
1,357
0
01 May 2019
Understanding Neural Networks via Feature Visualization: A survey
Understanding Neural Networks via Feature Visualization: A survey
Anh Nguyen
J. Yosinski
Jeff Clune
FAtt
13
160
0
18 Apr 2019
Defining Image Memorability using the Visual Memory Schema
Defining Image Memorability using the Visual Memory Schema
Erdem Akagündüz
A. Bors
K. Evans
12
28
0
05 Mar 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Learning Generalizable and Identity-Discriminative Representations for
  Face Anti-Spoofing
Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing
X. Tu
Jian-jun Zhao
M. Xie
Guodong Du
Hengsheng Zhang
Jianshu Li
Z. Ma
Jiashi Feng
CVBM
OOD
19
89
0
17 Jan 2019
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression
Yuchao Li
Shaohui Lin
Baochang Zhang
Jianzhuang Liu
David Doermann
Yongjian Wu
Feiyue Huang
Rongrong Ji
43
130
0
11 Dec 2018
Shared Representational Geometry Across Neural Networks
Shared Representational Geometry Across Neural Networks
Qihong Lu
Po-Hsuan Chen
Jonathan W. Pillow
Peter J. Ramadge
K. A. Norman
Uri Hasson
OOD
21
11
0
28 Nov 2018
RePr: Improved Training of Convolutional Filters
RePr: Improved Training of Convolutional Filters
Aaditya (Adi) Prakash
J. Storer
D. Florêncio
Cha Zhang
VLM
CVBM
35
57
0
18 Nov 2018
Agent Embeddings: A Latent Representation for Pole-Balancing Networks
Agent Embeddings: A Latent Representation for Pole-Balancing Networks
Oscar Chang
Robert Kwiatkowski
Siyuan Chen
Hod Lipson
24
6
0
12 Nov 2018
Identifying and Controlling Important Neurons in Neural Machine
  Translation
Identifying and Controlling Important Neurons in Neural Machine Translation
A. Bau
Yonatan Belinkov
Hassan Sajjad
Nadir Durrani
Fahim Dalvi
James R. Glass
MILM
21
180
0
03 Nov 2018
Analyzing biological and artificial neural networks: challenges with
  opportunities for synergy?
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
David Barrett
Ari S. Morcos
Jakob H. Macke
AI4CE
25
110
0
31 Oct 2018
Neural Networks Trained to Solve Differential Equations Learn General
  Representations
Neural Networks Trained to Solve Differential Equations Learn General Representations
M. Magill
F. Qureshi
H. W. Haan
6
64
0
29 Jun 2018
Insights on representational similarity in neural networks with
  canonical correlation
Insights on representational similarity in neural networks with canonical correlation
Ari S. Morcos
M. Raghu
Samy Bengio
DRL
32
430
0
14 Jun 2018
Revisiting the Importance of Individual Units in CNNs via Ablation
Revisiting the Importance of Individual Units in CNNs via Ablation
Bolei Zhou
Yiyou Sun
David Bau
Antonio Torralba
FAtt
59
116
0
07 Jun 2018
A Neurobiological Evaluation Metric for Neural Network Model Search
A Neurobiological Evaluation Metric for Neural Network Model Search
Nathaniel Blanchard
Jeffery Kinnison
Brandon RichardWebster
P. Bashivan
Walter J. Scheirer
27
12
0
28 May 2018
Understanding the Loss Surface of Neural Networks for Binary
  Classification
Understanding the Loss Surface of Neural Networks for Binary Classification
Shiyu Liang
Ruoyu Sun
Yixuan Li
R. Srikant
21
87
0
19 Feb 2018
Interpreting Deep Visual Representations via Network Dissection
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
29
323
0
15 Nov 2017
Representation of linguistic form and function in recurrent neural
  networks
Representation of linguistic form and function in recurrent neural networks
Ákos Kádár
Grzegorz Chrupała
A. Alishahi
27
162
0
29 Feb 2016
Previous
12