Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.07543
Cited By
Convergent Learning: Do different neural networks learn the same representations?
24 November 2015
Yixuan Li
J. Yosinski
Jeff Clune
Hod Lipson
J. Hopcroft
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergent Learning: Do different neural networks learn the same representations?"
50 / 81 papers shown
Title
NeuRN: Neuro-inspired Domain Generalization for Image Classification
Hamd Jalil
Ahmed Qazi
Asim Iqbal
OOD
MedIm
26
0
0
11 May 2025
Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry
Mohammed Adnan
Rohan Jain
Ekansh Sharma
Rahul Krishnan
Yani Andrew Ioannou
56
0
0
08 May 2025
Representational Similarity via Interpretable Visual Concepts
Neehar Kondapaneni
Oisin Mac Aodha
Pietro Perona
DRL
201
0
0
19 Mar 2025
ReSi: A Comprehensive Benchmark for Representational Similarity Measures
Max Klabunde
Tassilo Wald
Tobias Schumacher
Klaus H. Maier-Hein
Markus Strohmaier
Adriana Iamnitchi
AI4TS
VLM
76
5
0
13 Mar 2025
Mapping fMRI Signal and Image Stimuli in an Artificial Neural Network Latent Space: Bringing Artificial and Natural Minds Together
Cesare Maria Dalbagno
Manuel de Castro Ribeiro Jardim
Mihnea Angheluţă
49
0
0
12 Mar 2025
Forget the Data and Fine-Tuning! Just Fold the Network to Compress
Dong Wang
Haris Šikić
Lothar Thiele
O. Saukh
59
0
0
17 Feb 2025
Merging Feed-Forward Sublayers for Compressed Transformers
Neha Verma
Kenton W. Murray
Kevin Duh
AI4CE
50
0
0
10 Jan 2025
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
133
0
0
30 Dec 2024
Process Reward Model with Q-Value Rankings
W. Li
Yixuan Li
LRM
59
15
0
15 Oct 2024
Relative Representations: Topological and Geometric Perspectives
Alejandro García-Castellanos
G. Marchetti
Danica Kragic
Martina Scolamiero
50
0
0
17 Sep 2024
A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models
Geonhee Kim
Marco Valentino
André Freitas
LRM
AI4CE
30
7
0
16 Aug 2024
Harmony in Diversity: Merging Neural Networks with Canonical Correlation Analysis
Stefan Horoi
Albert Manuel Orozco Camacho
Eugene Belilovsky
Guy Wolf
FedML
MoMe
32
9
0
07 Jul 2024
Latent Space Translation via Inverse Relative Projection
Valentino Maiorca
Luca Moschella
Marco Fumero
Francesco Locatello
Emanuele Rodolà
42
1
0
21 Jun 2024
Neural Lineage
Runpeng Yu
Xinchao Wang
34
4
0
17 Jun 2024
DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models
Nastaran Saadati
Minh Pham
Nasla Saleem
Joshua R. Waite
Aditya Balu
Zhanhong Jiang
Chinmay Hegde
Soumik Sarkar
MoMe
47
1
0
11 Apr 2024
Federated Learning over Connected Modes
Dennis Grinwald
Philipp Wiesner
Shinichi Nakajima
FedML
45
0
0
05 Mar 2024
Towards Meta-Pruning via Optimal Transport
Alexander Theus
Olin Geimer
Friedrich Wicke
Thomas Hofmann
Sotiris Anagnostidis
Sidak Pal Singh
MoMe
24
3
0
12 Feb 2024
Do Vision and Language Encoders Represent the World Similarly?
Mayug Maniparambil
Raiymbek Akshulakov
Y. A. D. Djilali
Sanath Narayan
M. Seddik
K. Mangalam
Noel E. O'Connor
VLM
29
11
0
10 Jan 2024
Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks
Rahul Ramesh
Ekdeep Singh Lubana
Mikail Khona
Robert P. Dick
Hidenori Tanaka
CoGe
39
7
0
21 Nov 2023
Identifying Interpretable Visual Features in Artificial and Biological Neural Systems
David A. Klindt
Sophia Sanborn
Francisco Acosta
Frédéric Poitevin
Nina Miolane
MILM
FAtt
44
7
0
17 Oct 2023
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
29
6
0
26 May 2023
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
58
64
0
10 May 2023
Uncovering the Representation of Spiking Neural Networks Trained with Surrogate Gradient
Yuhang Li
Youngeun Kim
Hyoungseob Park
Priyadarshini Panda
32
16
0
25 Apr 2023
On the Variance of Neural Network Training with respect to Test Sets and Distributions
Keller Jordan
OOD
24
11
0
04 Apr 2023
FastFill: Efficient Compatible Model Update
Florian Jaeckle
Fartash Faghri
Ali Farhadi
Oncel Tuzel
Hadi Pouransari
36
2
0
08 Mar 2023
Testing the Channels of Convolutional Neural Networks
Kang Choi
Donghyun Son
Younghoon Kim
Jiwon Seo
28
1
0
06 Mar 2023
Analyzing Populations of Neural Networks via Dynamical Model Embedding
Jordan S. Cotler
Kai Sheng Tai
Felipe Hernández
Blake Elias
David Sussillo
17
4
0
27 Feb 2023
Model Doctor for Diagnosing and Treating Segmentation Error
Zhijie Jia
Lin Chen
Kaiwen Hu
Lechao Cheng
Zunlei Feng
Min-Gyoo Song
26
0
0
17 Feb 2023
A Toy Model of Universality: Reverse Engineering How Networks Learn Group Operations
Bilal Chughtai
Lawrence Chan
Neel Nanda
21
96
0
06 Feb 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
45
10
0
01 Dec 2022
ModelDiff: A Framework for Comparing Learning Algorithms
Harshay Shah
Sung Min Park
Andrew Ilyas
A. Madry
SyDa
51
26
0
22 Nov 2022
REPAIR: REnormalizing Permuted Activations for Interpolation Repair
Keller Jordan
Hanie Sedghi
O. Saukh
R. Entezari
Behnam Neyshabur
MoMe
46
94
0
15 Nov 2022
GULP: a prediction-based metric between representations
Enric Boix Adserà
Hannah Lawrence
George Stepaniants
Philippe Rigollet
46
11
0
12 Oct 2022
The Dynamic of Consensus in Deep Networks and the Identification of Noisy Labels
Daniel Shwartz
Uri Stern
D. Weinshall
NoLa
36
2
0
02 Oct 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
63
11
0
21 Sep 2022
Random initialisations performing above chance and how to find them
Frederik Benzing
Simon Schug
Robert Meier
J. Oswald
Yassir Akram
Nicolas Zucchet
Laurence Aitchison
Angelika Steger
ODL
35
24
0
15 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
316
0
11 Sep 2022
Knowledge Distillation of Transformer-based Language Models Revisited
Chengqiang Lu
Jianwei Zhang
Yunfei Chu
Zhengyu Chen
Jingren Zhou
Fei Wu
Haiqing Chen
Hongxia Yang
VLM
27
10
0
29 Jun 2022
DORA: Exploring Outlier Representations in Deep Neural Networks
Kirill Bykov
Mayukh Deb
Dennis Grinwald
Klaus-Robert Muller
Marina M.-C. Höhne
27
12
0
09 Jun 2022
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
Rhea Chowers
Yair Weiss
33
2
0
06 Jun 2022
Representation Topology Divergence: A Method for Comparing Neural Network Representations
S. Barannikov
I. Trofimov
Nikita Balabin
Evgeny Burnaev
3DPC
40
45
0
31 Dec 2021
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability
Sílvia Casacuberta
Esra Suel
Seth Flaxman
FAtt
21
1
0
31 Dec 2021
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
35
51
0
31 Dec 2021
Forward Compatible Training for Large-Scale Embedding Retrieval Systems
Vivek Ramanujan
Pavan Kumar Anasosalu Vasu
Ali Farhadi
Oncel Tuzel
Hadi Pouransari
VLM
32
16
0
06 Dec 2021
ReAct: Out-of-distribution Detection With Rectified Activations
Yiyou Sun
Chuan Guo
Yixuan Li
OODD
43
456
0
24 Nov 2021
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
14
16
0
24 Nov 2021
Hyper-Representations: Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction
Konstantin Schurholt
Dimche Kostadinov
Damian Borth
SSL
38
14
0
28 Oct 2021
Revisiting Model Stitching to Compare Neural Representations
Yamini Bansal
Preetum Nakkiran
Boaz Barak
FedML
44
105
0
14 Jun 2021
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
31
43
0
03 Jun 2021
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
32
32
0
02 Mar 2021
1
2
Next