ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.00327
  4. Cited By
Technical Privacy Metrics: a Systematic Survey
v1v2 (latest)

Technical Privacy Metrics: a Systematic Survey

1 December 2015
Isabel Wagner
D. Eckhoff
ArXiv (abs)PDFHTML

Papers citing "Technical Privacy Metrics: a Systematic Survey"

27 / 27 papers shown
Title
DUEF-GA: Data Utility and Privacy Evaluation Framework for Graph Anonymization
DUEF-GA: Data Utility and Privacy Evaluation Framework for Graph Anonymization
Jordi Casas-Roma
126
5
0
27 Jan 2025
Establishing and Evaluating Trustworthy AI: Overview and Research
  Challenges
Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
Dominik Kowald
S. Scher
Viktoria Pammer-Schindler
Peter Müllner
Kerstin Waxnegger
...
Andreas Truegler
Eduardo E. Veas
Roman Kern
Tomislav Nad
Simone Kopeinik
70
4
0
15 Nov 2024
Synthetic Data: Revisiting the Privacy-Utility Trade-off
Synthetic Data: Revisiting the Privacy-Utility Trade-off
Fatima Jahan Sarmin
Atiquer Rahman Sarkar
Yang Wang
Noman Mohammed
66
3
0
09 Jul 2024
Vertical Federated Learning for Effectiveness, Security, Applicability:
  A Survey
Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey
Mang Ye
Wei Shen
Bo Du
E. Snezhko
Vassili Kovalev
PongChi Yuen
FedML
128
5
0
25 May 2024
Data Readiness for AI: A 360-Degree Survey
Data Readiness for AI: A 360-Degree Survey
Kaveen Hiniduma
Suren Byna
J. L. Bez
70
8
0
08 Apr 2024
Privacy Preserving Federated Learning with Convolutional Variational
  Bottlenecks
Privacy Preserving Federated Learning with Convolutional Variational Bottlenecks
Daniel Scheliga
Patrick Mäder
M. Seeland
FedMLAAML
74
5
0
08 Sep 2023
Fairness and Privacy-Preserving in Federated Learning: A Survey
Fairness and Privacy-Preserving in Federated Learning: A Survey
Taki Hasan Rafi
Faiza Anan Noor
Tahmid Hussain
Dong-Kyu Chae
FedML
104
48
0
14 Jun 2023
FederatedTrust: A Solution for Trustworthy Federated Learning
FederatedTrust: A Solution for Trustworthy Federated Learning
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
Ning Xie
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
86
24
0
20 Feb 2023
Extending Expressive Access Policies with Privacy Features
Extending Expressive Access Policies with Privacy Features
Stefan More
Sebastian Ramacher
Lukas Alber
Marco Herzl
44
3
0
05 Dec 2022
How to keep text private? A systematic review of deep learning methods
  for privacy-preserving natural language processing
How to keep text private? A systematic review of deep learning methods for privacy-preserving natural language processing
Samuel Sousa
Roman Kern
PILMAILaw
71
46
0
20 May 2022
Private Quantiles Estimation in the Presence of Atoms
Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne
C. Gastaud
Nicolas Grislain
Aurélien Garivier
Rémi Gribonval
38
8
0
15 Feb 2022
A Review on Visual Privacy Preservation Techniques for Active and
  Assisted Living
A Review on Visual Privacy Preservation Techniques for Active and Assisted Living
Siddharth Ravi
Pau Climent-Pérez
Francisco Flórez-Revuelta
75
35
0
17 Dec 2021
HydraGAN A Multi-head, Multi-objective Approach to Synthetic Data
  Generation
HydraGAN A Multi-head, Multi-objective Approach to Synthetic Data Generation
Chance N. DeSmet
D. Cook
79
0
0
13 Nov 2021
A Survey of Privacy Vulnerabilities of Mobile Device Sensors
A Survey of Privacy Vulnerabilities of Mobile Device Sensors
Paula Delgado-Santos
Giuseppe Stragapede
Ruben Tolosana
R. Guest
F. Deravi
R. Vera-Rodríguez
PILM
73
47
0
18 Jun 2021
Privacy and Confidentiality in Process Mining -- Threats and Research
  Challenges
Privacy and Confidentiality in Process Mining -- Threats and Research Challenges
Gamal Elkoumy
Stephan A. Fahrenkrog-Petersen
M. Sani
A. Koschmider
F. Mannhardt
Saskia Nuñez Von Voigt
Majid Rafiei
Leopold von Waldthausen
63
41
0
01 Jun 2021
Privacy-preserving Analytics for Data Markets using MPC
Privacy-preserving Analytics for Data Markets using MPC
Karl Koch
Stephan Krenn
Donato Pellegrino
Sebastian Ramacher
46
14
0
05 Mar 2021
Research Challenges in Designing Differentially Private Text Generation
  Mechanisms
Research Challenges in Designing Differentially Private Text Generation Mechanisms
Oluwaseyi Feyisetan
Abhinav Aggarwal
Zekun Xu
Nathanael Teissier
126
8
0
10 Dec 2020
Data Minimization for GDPR Compliance in Machine Learning Models
Data Minimization for GDPR Compliance in Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
46
65
0
06 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of
  Artificial Intelligence
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
76
130
0
05 Aug 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
116
58
0
29 Jul 2020
A Case for Maximal Leakage as a Side Channel Leakage Metric
A Case for Maximal Leakage as a Side Channel Leakage Metric
Benjamin Wu
Aaron B. Wagner
G. E. Suh
AAML
28
3
0
17 Apr 2020
Conservative Plane Releasing for Spatial Privacy Protection in Mixed
  Reality
Conservative Plane Releasing for Spatial Privacy Protection in Mixed Reality
Jaybie A. de Guzman
Kanchana Thilakarathna
Aruna Seneviratne
58
8
0
17 Apr 2020
Secure Multi-Party Computation for Inter-Organizational Process Mining
Secure Multi-Party Computation for Inter-Organizational Process Mining
Gamal Elkoumy
Stephan A. Fahrenkrog-Petersen
Marlon Dumas
Peeter Laud
A. Pankova
Matthias Weidlich
41
31
0
04 Dec 2019
Leveraging Hierarchical Representations for Preserving Privacy and
  Utility in Text
Leveraging Hierarchical Representations for Preserving Privacy and Utility in Text
Oluwaseyi Feyisetan
Tom Diethe
Thomas Drake
71
75
0
20 Oct 2019
Privacy- and Utility-Preserving Textual Analysis via Calibrated
  Multivariate Perturbations
Privacy- and Utility-Preserving Textual Analysis via Calibrated Multivariate Perturbations
Oluwaseyi Feyisetan
Borja Balle
Thomas Drake
Tom Diethe
64
157
0
20 Oct 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
143
4,562
0
21 Aug 2019
SoK: Differential Privacies
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
160
126
0
04 Jun 2019
1