ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.06473
  4. Cited By
Quantized Convolutional Neural Networks for Mobile Devices

Quantized Convolutional Neural Networks for Mobile Devices

21 December 2015
Jiaxiang Wu
Cong Leng
Yuhang Wang
Qinghao Hu
Jian Cheng
    MQ
ArXivPDFHTML

Papers citing "Quantized Convolutional Neural Networks for Mobile Devices"

50 / 122 papers shown
Title
VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision
  Neural Network Inference
VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision Neural Network Inference
Steve Dai
Rangharajan Venkatesan
Haoxing Ren
B. Zimmer
W. Dally
Brucek Khailany
MQ
25
67
0
08 Feb 2021
SeReNe: Sensitivity based Regularization of Neurons for Structured
  Sparsity in Neural Networks
SeReNe: Sensitivity based Regularization of Neurons for Structured Sparsity in Neural Networks
Enzo Tartaglione
Andrea Bragagnolo
Francesco Odierna
A. Fiandrotti
Marco Grangetto
38
18
0
07 Feb 2021
Hybrid and Non-Uniform quantization methods using retro synthesis data
  for efficient inference
Hybrid and Non-Uniform quantization methods using retro synthesis data for efficient inference
Gvsl Tej Pratap
R. Kumar
MQ
16
1
0
26 Dec 2020
Parallel Blockwise Knowledge Distillation for Deep Neural Network
  Compression
Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression
Cody Blakeney
Xiaomin Li
Yan Yan
Ziliang Zong
29
39
0
05 Dec 2020
Bringing AI To Edge: From Deep Learning's Perspective
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
42
116
0
25 Nov 2020
Neural Network Compression Via Sparse Optimization
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
22
15
0
10 Nov 2020
Densely Guided Knowledge Distillation using Multiple Teacher Assistants
Densely Guided Knowledge Distillation using Multiple Teacher Assistants
Wonchul Son
Jaemin Na
Junyong Choi
Wonjun Hwang
20
110
0
18 Sep 2020
Transform Quantization for CNN (Convolutional Neural Network)
  Compression
Transform Quantization for CNN (Convolutional Neural Network) Compression
Sean I. Young
Wang Zhe
David S. Taubman
B. Girod
MQ
22
69
0
02 Sep 2020
T-Basis: a Compact Representation for Neural Networks
T-Basis: a Compact Representation for Neural Networks
Anton Obukhov
M. Rakhuba
Stamatios Georgoulis
Menelaos Kanakis
Dengxin Dai
Luc Van Gool
31
27
0
13 Jul 2020
Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization
  is Sufficient
Optimal Lottery Tickets via SubsetSum: Logarithmic Over-Parameterization is Sufficient
Ankit Pensia
Shashank Rajput
Alliot Nagle
Harit Vishwakarma
Dimitris Papailiopoulos
17
102
0
14 Jun 2020
Knowledge Distillation: A Survey
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,835
0
09 Jun 2020
Binary Neural Networks: A Survey
Binary Neural Networks: A Survey
Haotong Qin
Ruihao Gong
Xianglong Liu
Xiao Bai
Jingkuan Song
N. Sebe
MQ
34
457
0
31 Mar 2020
Communication-Efficient Edge AI: Algorithms and Systems
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Compact recurrent neural networks for acoustic event detection on
  low-energy low-complexity platforms
Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms
G. Cerutti
Rahul Prasad
A. Brutti
Elisabetta Farella
13
47
0
29 Jan 2020
Sparse Weight Activation Training
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
32
72
0
07 Jan 2020
ZeroQ: A Novel Zero Shot Quantization Framework
ZeroQ: A Novel Zero Shot Quantization Framework
Yaohui Cai
Z. Yao
Zhen Dong
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
27
389
0
01 Jan 2020
Lossless Compression of Deep Neural Networks
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
24
56
0
01 Jan 2020
S2DNAS:Transforming Static CNN Model for Dynamic Inference via Neural
  Architecture Search
S2DNAS:Transforming Static CNN Model for Dynamic Inference via Neural Architecture Search
Zhihang Yuan
Bingzhe Wu
Zheng Liang
Shiwan Zhao
Weichen Bi
Guangyu Sun
19
30
0
16 Nov 2019
HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks
HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks
Zhen Dong
Z. Yao
Yaohui Cai
Daiyaan Arfeen
A. Gholami
Michael W. Mahoney
Kurt Keutzer
MQ
24
274
0
10 Nov 2019
Fully Quantized Transformer for Machine Translation
Fully Quantized Transformer for Machine Translation
Gabriele Prato
Ella Charlaix
Mehdi Rezagholizadeh
MQ
13
68
0
17 Oct 2019
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge
  Computing
Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
En Li
Liekang Zeng
Zhi Zhou
Xu Chen
4
614
0
04 Oct 2019
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object
  Detection on FPGAs
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs
Caiwen Ding
Shuo Wang
Ning Liu
Kaidi Xu
Yanzhi Wang
Yun Liang
MQ
11
89
0
29 Sep 2019
Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar
  Framework for Ultra Efficient DNN Implementation
Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar Framework for Ultra Efficient DNN Implementation
Xiaolong Ma
Geng Yuan
Sheng Lin
Caiwen Ding
Fuxun Yu
Tao Liu
Wujie Wen
Xiang Chen
Yanzhi Wang
MQ
8
45
0
27 Aug 2019
Recent Advances in Deep Learning for Object Detection
Recent Advances in Deep Learning for Object Detection
Xiongwei Wu
Doyen Sahoo
S. Hoi
VLM
ObjD
30
794
0
10 Aug 2019
GDRQ: Group-based Distribution Reshaping for Quantization
GDRQ: Group-based Distribution Reshaping for Quantization
Haibao Yu
Tuopu Wen
Guangliang Cheng
Jiankai Sun
Qi Han
Jianping Shi
MQ
25
3
0
05 Aug 2019
And the Bit Goes Down: Revisiting the Quantization of Neural Networks
And the Bit Goes Down: Revisiting the Quantization of Neural Networks
Pierre Stock
Armand Joulin
Rémi Gribonval
Benjamin Graham
Hervé Jégou
MQ
26
149
0
12 Jul 2019
ViP: Virtual Pooling for Accelerating CNN-based Image Classification and
  Object Detection
ViP: Virtual Pooling for Accelerating CNN-based Image Classification and Object Detection
Zhuo Chen
Jiyuan Zhang
Ruizhou Ding
Diana Marculescu
11
12
0
19 Jun 2019
BasisConv: A method for compressed representation and learning in CNNs
BasisConv: A method for compressed representation and learning in CNNs
M. Tayyab
Abhijit Mahalanobis
3DPC
SSL
8
6
0
11 Jun 2019
Butterfly Transform: An Efficient FFT Based Neural Architecture Design
Butterfly Transform: An Efficient FFT Based Neural Architecture Design
Keivan Alizadeh-Vahid
Anish K. Prabhu
Ali Farhadi
Mohammad Rastegari
22
50
0
05 Jun 2019
Efficient 8-Bit Quantization of Transformer Neural Machine Language
  Translation Model
Efficient 8-Bit Quantization of Transformer Neural Machine Language Translation Model
Aishwarya Bhandare
Vamsi Sripathi
Deepthi Karkada
Vivek V. Menon
Sun Choi
Kushal Datta
V. Saletore
MQ
14
129
0
03 Jun 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
21
6,596
0
06 May 2019
Toward Extremely Low Bit and Lossless Accuracy in DNNs with Progressive
  ADMM
Toward Extremely Low Bit and Lossless Accuracy in DNNs with Progressive ADMM
Sheng Lin
Xiaolong Ma
Shaokai Ye
Geng Yuan
Kaisheng Ma
Yanzhi Wang
MQ
17
10
0
02 May 2019
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order
  Tensor
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order Tensor
Jean Kossaifi
Adrian Bulat
Georgios Tzimiropoulos
M. Pantic
14
67
0
04 Apr 2019
Correlation Congruence for Knowledge Distillation
Correlation Congruence for Knowledge Distillation
Baoyun Peng
Xiao Jin
Jiaheng Liu
Shunfeng Zhou
Yichao Wu
Yu Liu
Dongsheng Li
Zhaoning Zhang
35
507
0
03 Apr 2019
Looking Fast and Slow: Memory-Guided Mobile Video Object Detection
Looking Fast and Slow: Memory-Guided Mobile Video Object Detection
Mason Liu
Menglong Zhu
Marie White
Yinxiao Li
Dmitry Kalenichenko
15
83
0
25 Mar 2019
Progressive DNN Compression: A Key to Achieve Ultra-High Weight Pruning
  and Quantization Rates using ADMM
Progressive DNN Compression: A Key to Achieve Ultra-High Weight Pruning and Quantization Rates using ADMM
Shaokai Ye
Xiaoyu Feng
Tianyun Zhang
Xiaolong Ma
Sheng Lin
...
Jian Tang
M. Fardad
X. Lin
Yongpan Liu
Yanzhi Wang
MQ
22
38
0
23 Mar 2019
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural
  Architecture Search
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
X. Li
Yiming Zhou
Zheng Pan
Jiashi Feng
3DV
10
158
0
09 Mar 2019
An Optimized Recurrent Unit for Ultra-Low-Power Keyword Spotting
An Optimized Recurrent Unit for Ultra-Low-Power Keyword Spotting
Justice Amoh
K. Odame
24
17
0
13 Feb 2019
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Arthur Stoutchinin
Francesco Conti
Luca Benini
19
43
0
04 Feb 2019
Convolutional Neural Networks with Layer Reuse
Convolutional Neural Networks with Layer Reuse
Okan Kopuklu
M. Babaee
S. Hörmann
Gerhard Rigoll
11
17
0
28 Jan 2019
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using
  Alternating Direction Method of Multipliers
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Method of Multipliers
Ao Ren
Tianyun Zhang
Shaokai Ye
Jiayu Li
Wenyao Xu
Xuehai Qian
X. Lin
Yanzhi Wang
MQ
24
162
0
31 Dec 2018
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in
  FPGAs
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in FPGAs
Zhe Li
Caiwen Ding
Siyue Wang
Wujie Wen
Youwei Zhuo
...
Qinru Qiu
Wenyao Xu
X. Lin
Xuehai Qian
Yanzhi Wang
MQ
7
64
0
12 Dec 2018
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression
Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression
Yuchao Li
Shaohui Lin
Baochang Zhang
Jianzhuang Liu
David Doermann
Yongjian Wu
Feiyue Huang
R. Ji
29
130
0
11 Dec 2018
ESPNetv2: A Light-weight, Power Efficient, and General Purpose
  Convolutional Neural Network
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network
Sachin Mehta
Mohammad Rastegari
Linda G. Shapiro
Hannaneh Hajishirzi
VLM
15
392
0
28 Nov 2018
TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep
  LearningInference in Function as a Service Environments
TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments
Abdul Dakkak
Cheng-rong Li
Simon Garcia De Gonzalo
Jinjun Xiong
Wen-mei W. Hwu
14
19
0
24 Nov 2018
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
Jonathan Lew
Deval Shah
Suchita Pati
Shaylin Cattell
Mengchi Zhang
...
Christopher Ng
Negar Goli
Matthew D. Sinclair
Timothy G. Rogers
Tor M. Aamodt
13
65
0
18 Nov 2018
A First Look at Deep Learning Apps on Smartphones
A First Look at Deep Learning Apps on Smartphones
Mengwei Xu
Jiawei Liu
Yuanqiang Liu
F. Lin
Yunxin Liu
Xuanzhe Liu
HAI
17
177
0
08 Nov 2018
Progressive Weight Pruning of Deep Neural Networks using ADMM
Progressive Weight Pruning of Deep Neural Networks using ADMM
Shaokai Ye
Tianyun Zhang
Kaiqi Zhang
Jiayu Li
Kaidi Xu
...
M. Fardad
Sijia Liu
Xiang Chen
X. Lin
Yanzhi Wang
AI4CE
21
38
0
17 Oct 2018
Shift-based Primitives for Efficient Convolutional Neural Networks
Shift-based Primitives for Efficient Convolutional Neural Networks
Huasong Zhong
Xianggen Liu
Yihui He
Yuchun Ma
21
20
0
22 Sep 2018
Deep Learning Towards Mobile Applications
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
16
99
0
10 Sep 2018
Previous
123
Next