ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.07666
  4. Cited By
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks

Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

23 December 2015
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
    ODLBDL
ArXiv (abs)PDFHTML

Papers citing "Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks"

39 / 189 papers shown
Title
Variance Reduction in Stochastic Particle-Optimization Sampling
Variance Reduction in Stochastic Particle-Optimization SamplingInternational Conference on Machine Learning (ICML), 2018
Jianyi Zhang
Yang Zhao
Changyou Chen
OT
157
13
0
20 Nov 2018
Projected BNNs: Avoiding weight-space pathologies by learning latent
  representations of neural network weights
Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights
Melanie F. Pradier
Weiwei Pan
Jiayu Yao
S. Ghosh
Finale Doshi-velez
UQCVBDL
189
10
0
16 Nov 2018
Langevin-gradient parallel tempering for Bayesian neural learning
Langevin-gradient parallel tempering for Bayesian neural learning
Rohitash Chandra
Konark Jain
R. Deo
Sally Cripps
BDL
116
47
0
11 Nov 2018
Deep Poisson gamma dynamical systems
Deep Poisson gamma dynamical systems
D. Guo
Bo Chen
Hao Zhang
Mingyuan Zhou
146
29
0
26 Oct 2018
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Finding Mixed Nash Equilibria of Generative Adversarial Networks
Ya-Ping Hsieh
Chen Liu
S. Chakrabartty
GAN
300
101
0
23 Oct 2018
Stochastic Gradient MCMC for State Space Models
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
197
23
0
22 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural
  Network
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAMLOOD
242
181
0
01 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
323
47
0
05 Sep 2018
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Iñigo Urteaga
C. Wiggins
234
3
0
08 Aug 2018
Stochastic natural gradient descent draws posterior samples in function
  space
Stochastic natural gradient descent draws posterior samples in function space
Samuel L. Smith
Daniel Duckworth
Semon Rezchikov
Quoc V. Le
Jascha Narain Sohl-Dickstein
BDL
227
7
0
25 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDLUQCV
171
81
0
13 Jun 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
347
281
0
13 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
307
44
0
12 Jun 2018
Scalable Natural Gradient Langevin Dynamics in Practice
Scalable Natural Gradient Langevin Dynamics in Practice
Henri Palacci
H. Hess
BDL
119
8
0
07 Jun 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
235
91
0
29 May 2018
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Learning Sparse Structured Ensembles with SG-MCMC and Network Pruning
Yichi Zhang
Zhijian Ou
180
0
0
01 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson SamplingInternational Conference on Learning Representations (ICLR), 2018
C. Riquelme
George Tucker
Jasper Snoek
BDL
237
376
0
26 Feb 2018
Learning Structural Weight Uncertainty for Sequential Decision-Making
Learning Structural Weight Uncertainty for Sequential Decision-Making
Ruiyi Zhang
Chunyuan Li
Changyou Chen
Lawrence Carin
BDLUQCV
326
26
0
30 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential PrivacyInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2017
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
168
40
0
25 Dec 2017
Natural Langevin Dynamics for Neural Networks
Natural Langevin Dynamics for Neural Networks
Gaétan Marceau-Caron
Yann Ollivier
BDL
151
30
0
04 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
124
69
0
30 Nov 2017
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
187
28
0
04 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
266
59
0
04 Sep 2017
Differentially Private Regression for Discrete-Time Survival Analysis
Differentially Private Regression for Discrete-Time Survival Analysis
T. Nguyen
S. Hui
116
12
0
24 Aug 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an
  Application to Langevin Dynamics and SGVI
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
143
6
0
20 Jun 2017
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic
  Differential Equations for Markov Chain Monte Carlo
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte CarloInternational Conference on Machine Learning (ICML), 2017
Umut Simsekli
146
46
0
12 Jun 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic
  Gradient Riemannian MCMC
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMCInternational Conference on Machine Learning (ICML), 2017
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
172
68
0
06 Jun 2017
Bayesian Recurrent Neural Networks
Bayesian Recurrent Neural Networks
Meire Fortunato
Charles Blundell
Oriol Vinyals
BDL
353
200
0
10 Apr 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language
  Modeling
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDLUQCV
251
42
0
23 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
187
23
0
21 Oct 2016
Relativistic Monte Carlo
Relativistic Monte Carlo
Xiaoyu Lu
Valerio Perrone
Leonard Hasenclever
Yee Whye Teh
Sebastian J. Vollmer
BDL
138
39
0
14 Sep 2016
Stochastic Bouncy Particle Sampler
Stochastic Bouncy Particle Sampler
Ari Pakman
D. Gilboa
David Carlson
Liam Paninski
172
32
0
03 Sep 2016
A study of the effect of JPG compression on adversarial images
A study of the effect of JPG compression on adversarial images
Gintare Karolina Dziugaite
Zoubin Ghahramani
Daniel M. Roy
AAML
227
581
0
02 Aug 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
220
63
0
10 Feb 2016
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
392
73
0
31 Dec 2015
Bridging the Gap between Stochastic Gradient MCMC and Stochastic
  Optimization
Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization
Changyou Chen
David Carlson
Zhe Gan
Chunyuan Li
Lawrence Carin
195
92
0
25 Dec 2015
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep
  Models
High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models
Chunyuan Li
Changyou Chen
Kai Fan
Lawrence Carin
BDL
184
25
0
23 Dec 2015
Preconditioned Stochastic Gradient Descent
Preconditioned Stochastic Gradient Descent
Xi-Lin Li
208
106
0
14 Dec 2015
Adding Gradient Noise Improves Learning for Very Deep Networks
Adding Gradient Noise Improves Learning for Very Deep Networks
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Lukasz Kaiser
Karol Kurach
James Martens
AI4CEODL
224
570
0
21 Nov 2015
Previous
1234