Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.09327
Cited By
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
31 December 2015
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server"
18 / 18 papers shown
Title
Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Andy Gray
Alma A. M. Rahat
Tom Crick
Stephen Lindsay
ELM
46
1
0
01 Mar 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
96
1
0
25 Nov 2024
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
29
2
0
26 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici
Mikhail Yurochkin
S. Ghosh
Justin Solomon
FedML
MoMe
29
33
0
13 Jul 2020
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
32
37
0
23 May 2019
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
Improving GAN Training via Binarized Representation Entropy (BRE) Regularization
Yanshuai Cao
G. Ding
Kry Yik-Chau Lui
Ruitong Huang
GAN
18
19
0
09 May 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
28
32
0
26 Sep 2017
Warped Riemannian metrics for location-scale models
Salem Said
Lionel Bombrun
Y. Berthoumieu
43
15
0
22 Jul 2017
Element-centric clustering comparison unifies overlaps and hierarchy
Alexander J. Gates
Ian B. Wood
W. Hetrick
Yong-Yeol Ahn
9
89
0
19 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Variational Inference via
χ
χ
χ
-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
83
36
0
01 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
35
23
0
21 Oct 2016
Black-box
α
α
α
-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
23
137
0
10 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1