ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXivPDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,818 papers shown
Title
On the Impact of Sampling on Deep Sequential State Estimation
On the Impact of Sampling on Deep Sequential State Estimation
Helena Calatrava
R. Borsoi
Tales Imbiriba
Pau Closas
BDL
20
0
0
28 Nov 2023
Variational Inference for the Latent Shrinkage Position Model
Variational Inference for the Latent Shrinkage Position Model
Xian Yao Gwee
I. C. Gormley
Michael Fop
11
0
0
28 Nov 2023
A statistical approach to latent dynamic modeling with differential
  equations
A statistical approach to latent dynamic modeling with differential equations
Maren Hackenberg
Astrid Pechmann
Clemens Kreutz
Janbernd Kirschner
Harald Binder
20
1
0
27 Nov 2023
Robust Errant Beam Prognostics with Conditional Modeling for Particle
  Accelerators
Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Willem Blokland
Yasir Alanazi
Pradeep Ramuhalli
Alexander Zhukov
Charles Peters
Ricardo Vilalta
35
5
0
22 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal
  Prediction and Bayesian Deep Learning
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
48
0
0
21 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
36
2
0
21 Nov 2023
hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
  applications
hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience applications
Giulia Cisotto
Alberto Zancanaro
I. Zoppis
Sara Manzoni
30
1
0
20 Nov 2023
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet
  Variational Autoencoder for Hyperspectral Pixel Unmixing
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet Variational Autoencoder for Hyperspectral Pixel Unmixing
S. Chitnis
Kiran Mantripragada
Faisal Z. Qureshi
24
0
0
17 Nov 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based
  Inference
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
60
5
0
17 Nov 2023
vEEGNet: learning latent representations to reconstruct EEG raw data via
  variational autoencoders
vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders
Alberto Zancanaro
Giulia Cisotto
I. Zoppis
Sara Manzoni
DRL
21
3
0
16 Nov 2023
On the Quantification of Image Reconstruction Uncertainty without
  Training Data
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
26
1
0
16 Nov 2023
Modeling Complex Disease Trajectories using Deep Generative Models with
  Semi-Supervised Latent Processes
Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes
Cécile Trottet
Manuel Schürch
Ahmed Allam
Imon Barua
L. Petelytska
Oliver Distler
A. Hoffmann-Vold
Michael Krauthammer
Eustar collaborators
43
2
0
14 Nov 2023
Data-Efficient Task Generalization via Probabilistic Model-based Meta
  Reinforcement Learning
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning
Arjun Bhardwaj
Jonas Rothfuss
Bhavya Sukhija
Yarden As
Marco Hutter
Stelian Coros
Andreas Krause
32
5
0
13 Nov 2023
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
36
1
0
09 Nov 2023
Conditional Optimal Transport on Function Spaces
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
45
14
0
09 Nov 2023
Inferring stochastic rates from heterogeneous snapshots of particle
  positions
Inferring stochastic rates from heterogeneous snapshots of particle positions
Christopher E Miles
Scott A. McKinley
Fangyuan Ding
R. Lehoucq
19
4
0
08 Nov 2023
Generative learning for nonlinear dynamics
Generative learning for nonlinear dynamics
William Gilpin
AI4CE
PINN
65
27
0
07 Nov 2023
Understanding Tool Discovery and Tool Innovation Using Active Inference
Understanding Tool Discovery and Tool Innovation Using Active Inference
Poppy Collis
Paul F Kinghorn
Christopher L. Buckley
17
0
0
07 Nov 2023
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in
  Gaussian Mixture Models
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
26
0
0
07 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
Riemannian Laplace Approximation with the Fisher Metric
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
Mark Girolami
Arto Klami
32
3
0
05 Nov 2023
Forward $χ^2$ Divergence Based Variational Importance Sampling
Forward χ2χ^2χ2 Divergence Based Variational Importance Sampling
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
30
2
0
04 Nov 2023
Uncertainty Quantification of Deep Learning for Spatiotemporal Data:
  Challenges and Opportunities
Uncertainty Quantification of Deep Learning for Spatiotemporal Data: Challenges and Opportunities
Wenchong He
Zhe Jiang
35
1
0
04 Nov 2023
Variational Inference for Sparse Poisson Regression
Variational Inference for Sparse Poisson Regression
Mitra Kharabati
Morteza Amini
37
1
0
02 Nov 2023
ABC-based Forecasting in State Space Models
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
16
1
0
02 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
30
2
0
01 Nov 2023
Diffusion models for probabilistic programming
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
58
0
0
01 Nov 2023
Variational non-Bayesian inference of the Probability Density Function
  in the Wiener Algebra
Variational non-Bayesian inference of the Probability Density Function in the Wiener Algebra
U. J. Choi
Kyung Soo Rim
14
0
0
01 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient
  Flows
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
On Feynman--Kac training of partial Bayesian neural networks
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schon
Jens Sjölund
40
0
0
30 Oct 2023
A spectral regularisation framework for latent variable models designed
  for single channel applications
A spectral regularisation framework for latent variable models designed for single channel applications
Ryan Balshaw
P. Heyns
Daniel N. Wilke
Stephan Schmidt
37
1
0
30 Oct 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
27
9
0
29 Oct 2023
Variance-based sensitivity of Bayesian inverse problems to the prior
  distribution
Variance-based sensitivity of Bayesian inverse problems to the prior distribution
John E. Darges
A. Alexanderian
P. Gremaud
15
1
0
27 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to
  Diffusion Model Acceleration
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
24
6
0
26 Oct 2023
Adaptive importance sampling for heavy-tailed distributions via
  $α$-divergence minimization
Adaptive importance sampling for heavy-tailed distributions via ααα-divergence minimization
Thomas Guilmeau
Nicola Branchini
Émilie Chouzenoux
Victor Elvira
44
2
0
25 Oct 2023
Particle-based Variational Inference with Generalized Wasserstein
  Gradient Flow
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
32
6
0
25 Oct 2023
Joint Distributional Learning via Cramer-Wold Distance
Joint Distributional Learning via Cramer-Wold Distance
SeungHwan An
Jong-June Jeon
32
0
0
25 Oct 2023
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
45
0
0
25 Oct 2023
SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving
SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving
Xueliang Zhao
Xinting Huang
Wei Bi
Lingpeng Kong
LRM
48
0
0
19 Oct 2023
Subject-specific Deep Neural Networks for Count Data with
  High-cardinality Categorical Features
Subject-specific Deep Neural Networks for Count Data with High-cardinality Categorical Features
Hangbin Lee
I. Ha
Changha Hwang
Youngjo Lee
28
1
0
18 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
Sub-optimality of the Naive Mean Field approximation for proportional
  high-dimensional Linear Regression
Sub-optimality of the Naive Mean Field approximation for proportional high-dimensional Linear Regression
Jiaze Qiu
33
3
0
15 Oct 2023
Statistical guarantees for stochastic Metropolis-Hastings
Statistical guarantees for stochastic Metropolis-Hastings
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
36
1
0
13 Oct 2023
An Introduction to the Calibration of Computer Models
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
32
0
0
13 Oct 2023
Hamiltonian Dynamics of Bayesian Inference Formalised by Arc Hamiltonian
  Systems
Hamiltonian Dynamics of Bayesian Inference Formalised by Arc Hamiltonian Systems
Takuo Matsubara
13
0
0
11 Oct 2023
Surrogate modeling for stochastic crack growth processes in structural
  health monitoring applications
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
26
0
0
11 Oct 2023
Learning Stackable and Skippable LEGO Bricks for Efficient,
  Reconfigurable, and Variable-Resolution Diffusion Modeling
Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
Huangjie Zheng
Zhendong Wang
Jianbo Yuan
Guanghan Ning
Pengcheng He
Quanzeng You
Hongxia Yang
Mingyuan Zhou
40
9
0
10 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian
  Inference
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
40
5
0
06 Oct 2023
Accelerating optimization over the space of probability measures
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
32
5
0
06 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
30
13
0
05 Oct 2023
Cutting Feedback in Misspecified Copula Models
Cutting Feedback in Misspecified Copula Models
Michael Stanley Smith
Weichang Yu
David J. Nott
David T. Frazier
24
1
0
05 Oct 2023
Previous
123...789...353637
Next