Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,818 papers shown
Title
On the Impact of Sampling on Deep Sequential State Estimation
Helena Calatrava
R. Borsoi
Tales Imbiriba
Pau Closas
BDL
20
0
0
28 Nov 2023
Variational Inference for the Latent Shrinkage Position Model
Xian Yao Gwee
I. C. Gormley
Michael Fop
11
0
0
28 Nov 2023
A statistical approach to latent dynamic modeling with differential equations
Maren Hackenberg
Astrid Pechmann
Clemens Kreutz
Janbernd Kirschner
Harald Binder
20
1
0
27 Nov 2023
Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Willem Blokland
Yasir Alanazi
Pradeep Ramuhalli
Alexander Zhukov
Charles Peters
Ricardo Vilalta
35
5
0
22 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
48
0
0
21 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
36
2
0
21 Nov 2023
hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience applications
Giulia Cisotto
Alberto Zancanaro
I. Zoppis
Sara Manzoni
30
1
0
20 Nov 2023
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet Variational Autoencoder for Hyperspectral Pixel Unmixing
S. Chitnis
Kiran Mantripragada
Faisal Z. Qureshi
24
0
0
17 Nov 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
60
5
0
17 Nov 2023
vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders
Alberto Zancanaro
Giulia Cisotto
I. Zoppis
Sara Manzoni
DRL
21
3
0
16 Nov 2023
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
26
1
0
16 Nov 2023
Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes
Cécile Trottet
Manuel Schürch
Ahmed Allam
Imon Barua
L. Petelytska
Oliver Distler
A. Hoffmann-Vold
Michael Krauthammer
Eustar collaborators
43
2
0
14 Nov 2023
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning
Arjun Bhardwaj
Jonas Rothfuss
Bhavya Sukhija
Yarden As
Marco Hutter
Stelian Coros
Andreas Krause
32
5
0
13 Nov 2023
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
36
1
0
09 Nov 2023
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
45
14
0
09 Nov 2023
Inferring stochastic rates from heterogeneous snapshots of particle positions
Christopher E Miles
Scott A. McKinley
Fangyuan Ding
R. Lehoucq
19
4
0
08 Nov 2023
Generative learning for nonlinear dynamics
William Gilpin
AI4CE
PINN
65
27
0
07 Nov 2023
Understanding Tool Discovery and Tool Innovation Using Active Inference
Poppy Collis
Paul F Kinghorn
Christopher L. Buckley
17
0
0
07 Nov 2023
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
26
0
0
07 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
Mark Girolami
Arto Klami
32
3
0
05 Nov 2023
Forward
χ
2
χ^2
χ
2
Divergence Based Variational Importance Sampling
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
30
2
0
04 Nov 2023
Uncertainty Quantification of Deep Learning for Spatiotemporal Data: Challenges and Opportunities
Wenchong He
Zhe Jiang
35
1
0
04 Nov 2023
Variational Inference for Sparse Poisson Regression
Mitra Kharabati
Morteza Amini
37
1
0
02 Nov 2023
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
16
1
0
02 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
30
2
0
01 Nov 2023
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
58
0
0
01 Nov 2023
Variational non-Bayesian inference of the Probability Density Function in the Wiener Algebra
U. J. Choi
Kyung Soo Rim
14
0
0
01 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schon
Jens Sjölund
40
0
0
30 Oct 2023
A spectral regularisation framework for latent variable models designed for single channel applications
Ryan Balshaw
P. Heyns
Daniel N. Wilke
Stephan Schmidt
37
1
0
30 Oct 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
27
9
0
29 Oct 2023
Variance-based sensitivity of Bayesian inverse problems to the prior distribution
John E. Darges
A. Alexanderian
P. Gremaud
15
1
0
27 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
24
6
0
26 Oct 2023
Adaptive importance sampling for heavy-tailed distributions via
α
α
α
-divergence minimization
Thomas Guilmeau
Nicola Branchini
Émilie Chouzenoux
Victor Elvira
44
2
0
25 Oct 2023
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
32
6
0
25 Oct 2023
Joint Distributional Learning via Cramer-Wold Distance
SeungHwan An
Jong-June Jeon
32
0
0
25 Oct 2023
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
45
0
0
25 Oct 2023
SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving
Xueliang Zhao
Xinting Huang
Wei Bi
Lingpeng Kong
LRM
48
0
0
19 Oct 2023
Subject-specific Deep Neural Networks for Count Data with High-cardinality Categorical Features
Hangbin Lee
I. Ha
Changha Hwang
Youngjo Lee
28
1
0
18 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
Sub-optimality of the Naive Mean Field approximation for proportional high-dimensional Linear Regression
Jiaze Qiu
33
3
0
15 Oct 2023
Statistical guarantees for stochastic Metropolis-Hastings
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
36
1
0
13 Oct 2023
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
32
0
0
13 Oct 2023
Hamiltonian Dynamics of Bayesian Inference Formalised by Arc Hamiltonian Systems
Takuo Matsubara
13
0
0
11 Oct 2023
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
26
0
0
11 Oct 2023
Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
Huangjie Zheng
Zhendong Wang
Jianbo Yuan
Guanghan Ning
Pengcheng He
Quanzeng You
Hongxia Yang
Mingyuan Zhou
40
9
0
10 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
40
5
0
06 Oct 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
32
5
0
06 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
30
13
0
05 Oct 2023
Cutting Feedback in Misspecified Copula Models
Michael Stanley Smith
Weichang Yu
David J. Nott
David T. Frazier
24
1
0
05 Oct 2023
Previous
1
2
3
...
7
8
9
...
35
36
37
Next