Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,818 papers shown
Title
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
If there is no underfitting, there is no Cold Posterior Effect
Yijie Zhang
Yi-Shan Wu
Luis A. Ortega
A. Masegosa
UQCV
34
1
0
02 Oct 2023
Drug Discovery with Dynamic Goal-aware Fragments
Seul Lee
Seanie Lee
Kenji Kawaguchi
Sung Ju Hwang
28
5
0
02 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
34
76
0
01 Oct 2023
A General Offline Reinforcement Learning Framework for Interactive Recommendation
Teng Xiao
Donglin Wang
OffRL
34
73
0
01 Oct 2023
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
24
4
0
29 Sep 2023
Stochastic Implicit Neural Signed Distance Functions for Safe Motion Planning under Sensing Uncertainty
Carlos Quintero-Peña
Wil Thomason
Bo Xiong
Anastasios Kyrillidis
Lydia E. Kavraki
22
7
0
28 Sep 2023
A Variational Spike-and-Slab Approach for Group Variable Selection
M. Ramezani
Hossein Rastgoftar
Jun S. Liu
38
0
0
28 Sep 2023
A Mean Field Approach to Empirical Bayes Estimation in High-dimensional Linear Regression
Soumendu Sundar Mukherjee
Bodhisattva Sen
Subhabrata Sen
40
4
0
28 Sep 2023
Generating Personalized Insulin Treatments Strategies with Deep Conditional Generative Time Series Models
Manuel Schürch
Xiang Li
Ahmed Allam
Giulia Rathmes
Amina Mollaysa
Claudia Cavelti-Weder
Michael Krauthammer
AI4TS
26
4
0
28 Sep 2023
FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for Independence-Assumption-Free Uncertainty Estimation
Songlin Wei
JIazhao Zhang
Yang Wang
Ruben Verborgh
Hao Su
He Wang
AI4CE
32
3
0
28 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Bayesian Personalized Federated Learning with Shared and Personalized Uncertainty Representations
Hui Chen
Hengyu Liu
LongBing Cao
Tiancheng Zhang
FedML
55
3
0
27 Sep 2023
Improvements on Scalable Stochastic Bayesian Inference Methods for Multivariate Hawkes Process
Alex Ziyu Jiang
Abel Rodríguez
27
1
0
26 Sep 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
26
1
0
26 Sep 2023
Generative Filtering for Recursive Bayesian Inference with Streaming Data
Ian Taylor
Andee Kaplan
Brenda Betancourt
22
0
0
25 Sep 2023
Independent projections of diffusions: Gradient flows for variational inference and optimal mean field approximations
D. Lacker
DiffM
22
7
0
23 Sep 2023
Bayesian sparsification for deep neural networks with Bayesian model reduction
Dimitrije Marković
K. Friston
S. Kiebel
BDL
UQCV
40
1
0
21 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
34
26
0
20 Sep 2023
Generalizing Across Domains in Diabetic Retinopathy via Variational Autoencoders
Sharon Chokuwa
M. H. Khan
44
5
0
20 Sep 2023
Conformalized Multimodal Uncertainty Regression and Reasoning
Mimmo Parente
Nastaran Darabi
Alex C. Stutts
Theja Tulabandhula
A. R. Trivedi
UQCV
36
7
0
20 Sep 2023
Group Spike and Slab Variational Bayes
M. Komodromos
Marina Evangelou
Sarah Filippi
Kolyan Ray
40
2
0
19 Sep 2023
Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs via Double Normalizing Flows
Jian Xu
Shian Du
Junmei Yang
Xinghao Ding
John Paisley
Delu Zeng
25
0
0
17 Sep 2023
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
Sutanu Gayen
Kuldeep S. Meel
Dimitrios Myrisiotis
A. Pavan
N. V. Vinodchandran
26
4
0
17 Sep 2023
Beta Diffusion
Mingyuan Zhou
Tianqi Chen
Zhendong Wang
Huangjie Zheng
DiffM
29
10
0
14 Sep 2023
All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks
R. D. East
Guillermo Alonso-Linaje
Chae-Yeun Park
21
13
0
13 Sep 2023
Dynamic Causal Disentanglement Model for Dialogue Emotion Detection
Yuting Su
Yichen Wei
Weizhi Nie
Sicheng Zhao
Anan Liu
22
4
0
13 Sep 2023
Towards the TopMost: A Topic Modeling System Toolkit
Xiaobao Wu
Fengjun Pan
Anh Tuan Luu
37
14
0
13 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
39
3
0
08 Sep 2023
Learning Active Subspaces for Effective and Scalable Uncertainty Quantification in Deep Neural Networks
Sanket R. Jantre
Nathan M. Urban
Xiaoning Qian
Byung-Jun Yoon
BDL
UQCV
34
4
0
06 Sep 2023
Amortised Inference in Bayesian Neural Networks
Tommy Rochussen
UQCV
BDL
41
0
0
06 Sep 2023
Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter
Jinglong Wang
Xiawei Li
Jing Zhang
Qingyuan Xu
Qin Zhou
Qian Yu
Lu Sheng
Dong Xu
VLM
DiffM
26
45
0
06 Sep 2023
Cognition-Mode Aware Variational Representation Learning Framework for Knowledge Tracing
Moyu Zhang
Xinning Zhu
Chun-Xiao Zhang
Feng Pan
Wenchen Qian
Hui Zhao
26
0
0
03 Sep 2023
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
17
0
0
01 Sep 2023
Unsupervised Text Style Transfer with Deep Generative Models
Zhongtao Jiang
Yuanzhe Zhang
Yiming Ju
Kang Liu
32
0
0
31 Aug 2023
Mixed Variational Flows for Discrete Variables
Gian Carlo Diluvi
Benjamin Bloem-Reddy
Trevor Campbell
38
0
0
29 Aug 2023
Heterogeneous Multi-Task Gaussian Cox Processes
Feng Zhou
Quyu Kong
Zhijie Deng
Fengxiang He
Peng Cui
Jun Zhu
38
2
0
29 Aug 2023
NAS-X: Neural Adaptive Smoothing via Twisting
Dieterich Lawson
Michael Y. Li
Scott W. Linderman
20
1
0
28 Aug 2023
Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach
Firas Fredj
Amal Feriani
A. Mezghani
Ekram Hossain
26
2
0
25 Aug 2023
Constrained Stein Variational Trajectory Optimization
Thomas Power
Dmitry Berenson
33
12
0
23 Aug 2023
Deep Generative Modeling-based Data Augmentation with Demonstration using the BFBT Benchmark Void Fraction Datasets
Farah Alsafadi
Xuehui Wu
41
3
0
19 Aug 2023
Modeling Random Networks with Heterogeneous Reciprocity
Daniel Cirkovic
Tiandong Wang
26
3
0
19 Aug 2023
Semi-Implicit Variational Inference via Score Matching
Longlin Yu
C. Zhang
27
11
0
19 Aug 2023
Robust Bayesian Tensor Factorization with Zero-Inflated Poisson Model and Consensus Aggregation
Daniel Chafamo
Vignesh Shanmugam
Neriman Tokcan
24
1
0
15 Aug 2023
Benchmarking Scalable Epistemic Uncertainty Quantification in Organ Segmentation
Jadie Adams
Shireen Y. Elhabian
UQCV
21
5
0
15 Aug 2023
Comparing the quality of neural network uncertainty estimates for classification problems
Daniel Ries
Joshua J. Michalenko
T. Ganter
R. Baiyasi
Jason Adams
UQCV
BDL
31
1
0
11 Aug 2023
Target Detection on Hyperspectral Images Using MCMC and VI Trained Bayesian Neural Networks
Daniel Ries
Jason Adams
J. Zollweg
BDL
27
1
0
11 Aug 2023
Path Signatures for Diversity in Probabilistic Trajectory Optimisation
Lucas Barcelos
Tin Lai
Rafael Oliveira
Paulo Borges
Fabio Ramos
51
6
0
08 Aug 2023
Interpretable Machine Learning for Discovery: Statistical Challenges \& Opportunities
Genevera I. Allen
Luqin Gan
Lili Zheng
38
9
0
02 Aug 2023
Adaptive MCMC for Bayesian variable selection in generalised linear models and survival models
Xitong Liang
Samuel Livingstone
Jim Griffin
26
5
0
01 Aug 2023
Previous
1
2
3
...
8
9
10
...
35
36
37
Next