Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.03253
Cited By
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
10 February 2016
Qiang Liu
J. Lee
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation"
50 / 296 papers shown
Title
Constrained Stein Variational Trajectory Optimization
Thomas Power
Dmitry Berenson
33
12
0
23 Aug 2023
Semi-Implicit Variational Inference via Score Matching
Longlin Yu
C. Zhang
19
10
0
19 Aug 2023
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
29
3
0
08 Aug 2023
Energy Discrepancies: A Score-Independent Loss for Energy-Based Models
Tobias Schröder
Zijing Ou
Jen Ning Lim
Yingzhen Li
Sebastian J. Vollmer
Andrew B. Duncan
30
4
0
12 Jul 2023
A prior regularized full waveform inversion using generative diffusion models
Fu Wang
Xinquan Huang
T. Alkhalifah
DiffM
40
25
0
22 Jun 2023
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting
Felix Biggs
Antonin Schrab
A. Gretton
17
19
0
14 Jun 2023
Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction
Taiji Suzuki
Denny Wu
Atsushi Nitanda
29
16
0
12 Jun 2023
Entropy-based Training Methods for Scalable Neural Implicit Sampler
Weijian Luo
Boya Zhang
Zhihua Zhang
31
10
0
08 Jun 2023
GANs Settle Scores!
Siddarth Asokan
Nishanth Shetty
Aadithya Srikanth
C. Seelamantula
42
0
0
02 Jun 2023
Approximate Stein Classes for Truncated Density Estimation
Daniel J. Williams
Song Liu
13
0
0
01 Jun 2023
Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Aniket Das
Dheeraj M. Nagaraj
35
7
0
27 May 2023
Non-adversarial training of Neural SDEs with signature kernel scores
Zacharia Issa
Blanka Horvath
M. Lemercier
C. Salvi
AI4TS
37
24
0
25 May 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
38
2
0
24 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
27
9
0
23 May 2023
Kernel Stein Discrepancy on Lie Groups: Theory and Applications
Xiaoda Qu
Xiran Fan
B. Vemuri
32
0
0
21 May 2023
Stein
Π
Π
Π
-Importance Sampling
Congye Wang
Ye Chen
Heishiro Kanagawa
Chris J. Oates
37
2
0
17 May 2023
Differentiable Neural Networks with RePU Activation: with Applications to Score Estimation and Isotonic Regression
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
50
3
0
01 May 2023
Using Perturbation to Improve Goodness-of-Fit Tests based on Kernelized Stein Discrepancy
Xingtu Liu
Andrew B. Duncan
Axel Gandy
35
7
0
28 Apr 2023
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
29
2
0
25 Apr 2023
Causal Discovery with Score Matching on Additive Models with Arbitrary Noise
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Anton van den Hengel
Francesco Locatello
CML
13
27
0
06 Apr 2023
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks
Forough Fazeli Asl
M. Zhang
Lizhen Lin
24
1
0
05 Mar 2023
How to Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control
Jacopo Teneggi
Matthew Tivnan
J. W. Stayman
Jeremias Sulam
DiffM
35
28
0
07 Feb 2023
Kernel Stein Discrepancy thinning: a theoretical perspective of pathologies and a practical fix with regularization
Clément Bénard
B. Staber
Sébastien Da Veiga
38
4
0
31 Jan 2023
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
7
0
28 Jan 2023
Minimax Optimal Rate for Parameter Estimation in Multivariate Deviated Models
Dat Do
Huy Nguyen
Khai Nguyen
Nhat Ho
23
4
0
27 Jan 2023
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
Louis Sharrock
Christopher Nemeth
BDL
28
8
0
26 Jan 2023
Separate And Diffuse: Using a Pretrained Diffusion Model for Improving Source Separation
Shahar Lutati
Eliya Nachmani
Lior Wolf
DiffM
36
14
0
25 Jan 2023
Client Selection for Federated Bayesian Learning
Jiarong Yang
Yuan Liu
Rahif Kassab
FedML
38
11
0
11 Dec 2022
Efficient Stein Variational Inference for Reliable Distribution-lossless Network Pruning
Yingchun Wang
Song Guo
Jingcai Guo
Weizhan Zhang
Yi Tian Xu
Jiewei Zhang
Yi Liu
21
17
0
07 Dec 2022
Are you using test log-likelihood correctly?
Sameer K. Deshpande
Soumya K. Ghosh
Tin D. Nguyen
Tamara Broderick
32
7
0
01 Dec 2022
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
27
19
0
25 Nov 2022
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
28
18
0
17 Nov 2022
Sobolev Spaces, Kernels and Discrepancies over Hyperspheres
S. Hubbert
Emilio Porcu
Chris J. Oates
Mark Girolami
11
4
0
16 Nov 2022
Regularized Stein Variational Gradient Flow
Ye He
Krishnakumar Balasubramanian
Bharath K. Sriperumbudur
Jianfeng Lu
OT
34
11
0
15 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Controlling Moments with Kernel Stein Discrepancies
Heishiro Kanagawa
Alessandro Barp
A. Gretton
Lester W. Mackey
24
8
0
10 Nov 2022
Ensemble transport smoothing. Part II: Nonlinear updates
M. Ramgraber
Ricardo Baptista
D. McLaughlin
Youssef Marzouk
23
6
0
31 Oct 2022
Minimum Kernel Discrepancy Estimators
Chris J. Oates
27
10
0
28 Oct 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
22
0
0
28 Oct 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
30
4
0
24 Oct 2022
A kernel Stein test of goodness of fit for sequential models
Jerome Baum
Heishiro Kanagawa
A. Gretton
24
9
0
19 Oct 2022
Transport Elliptical Slice Sampling
A. Cabezas
Christopher Nemeth
16
8
0
19 Oct 2022
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
41
1
0
12 Oct 2022
On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics
Moritz Weckbecker
Wenkai Xu
Gesine Reinert
52
3
0
11 Oct 2022
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
61
33
0
10 Oct 2022
Hiding Images in Deep Probabilistic Models
Haoyu Chen
Linqi Song
Zhenxing Qian
Xinpeng Zhang
Kede Ma
AAML
18
10
0
05 Oct 2022
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj Kasprzak
Ryan Giordano
Tamara Broderick
33
4
0
29 Sep 2022
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
48
14
0
26 Sep 2022
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
25
14
0
22 Sep 2022
Towards Healing the Blindness of Score Matching
Mingtian Zhang
Oscar Key
Peter Hayes
David Barber
Brooks Paige
F. Briol
MedIm
55
14
0
15 Sep 2022
Previous
1
2
3
4
5
6
Next