Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.03253
Cited By
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
10 February 2016
Qiang Liu
J. Lee
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation"
50 / 296 papers shown
Title
MDM: Molecular Diffusion Model for 3D Molecule Generation
Lei Huang
Hengtong Zhang
Tingyang Xu
Ka-Chun Wong
DiffM
18
81
0
13 Sep 2022
A general framework for the analysis of kernel-based tests
Tamara Fernández
Nicolás Rivera
11
4
0
31 Aug 2022
A deep learning framework for geodesics under spherical Wasserstein-Fisher-Rao metric and its application for weighted sample generation
Yang Jing
Jia-hua Chen
Lei Li
Jianfeng Lu
17
1
0
25 Aug 2022
A Survey of Learning on Small Data: Generalization, Optimization, and Challenge
Xiaofeng Cao
Weixin Bu
Sheng-Jun Huang
Minling Zhang
Ivor W. Tsang
Yew-Soon Ong
James T. Kwok
35
1
0
29 Jul 2022
Neural Stein critics with staged
L
2
L^2
L
2
-regularization
Matthew Repasky
Xiuyuan Cheng
Yao Xie
19
3
0
07 Jul 2022
Gradient-Free Kernel Stein Discrepancy
Matthew A. Fisher
Chris J. Oates
20
5
0
06 Jul 2022
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
26
2
0
03 Jul 2022
Score Matching for Truncated Density Estimation on a Manifold
Daniel J. Williams
Song Liu
12
3
0
29 Jun 2022
Efficient Aggregated Kernel Tests using Incomplete
U
U
U
-statistics
Antonin Schrab
Ilmun Kim
Benjamin Guedj
A. Gretton
32
29
0
18 Jun 2022
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal Reinforcement Learning
Nicolas Castanet
Sylvain Lamprier
Olivier Sigaud
17
2
0
14 Jun 2022
A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces
George Wynne
Mikolaj Kasprzak
Andrew B. Duncan
25
4
0
09 Jun 2022
Benchmarking Bayesian neural networks and evaluation metrics for regression tasks
B. Staber
Sébastien Da Veiga
UQCV
BDL
42
3
0
08 Jun 2022
Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Brian M. Sadler
Furong Huang
Pratap Tokekar
Tianyi Zhou
25
9
0
02 Jun 2022
Know Your Boundaries: The Necessity of Explicit Behavioral Cloning in Offline RL
Wonjoon Goo
S. Niekum
OffRL
21
20
0
01 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
A Kernelised Stein Statistic for Assessing Implicit Generative Models
Wenkai Xu
Gesine Reinert
SyDa
18
3
0
31 May 2022
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
31
25
0
20 Mar 2022
Score matching enables causal discovery of nonlinear additive noise models
Paul Rolland
V. Cevher
Matthäus Kleindessner
Chris Russel
Bernhard Schölkopf
Dominik Janzing
Francesco Locatello
CML
54
84
0
08 Mar 2022
AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators
Wenkai Xu
Gesine Reinert
27
4
0
07 Mar 2022
Score-Based Generative Models for Molecule Generation
Dwaraknath Gnaneshwar
Bharath Ramsundar
Dhairya Gandhi
Rachel C. Kurchin
V. Viswanathan
DiffM
22
11
0
07 Mar 2022
Stochastic Modeling of Inhomogeneities in the Aortic Wall and Uncertainty Quantification using a Bayesian Encoder-Decoder Surrogate
Sascha Ranftl
Malte Rolf-Pissarczyk
G. Wolkerstorfer
Antonio Pepe
Jan Egger
W. Linden
G. Holzapfel
31
9
0
21 Feb 2022
Understanding DDPM Latent Codes Through Optimal Transport
Valentin Khrulkov
Gleb Ryzhakov
Andrei Chertkov
Ivan V. Oseledets
OT
DiffM
24
51
0
14 Feb 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDL
DRL
16
14
0
09 Feb 2022
Stein Particle Filter for Nonlinear, Non-Gaussian State Estimation
F. A. Maken
Fabio Ramos
Lionel Ott
21
19
0
09 Feb 2022
Grassmann Stein Variational Gradient Descent
Xingtu Liu
Harrison Zhu
Jean-François Ton
George Wynne
Andrew Duncan
23
12
0
07 Feb 2022
KSD Aggregated Goodness-of-fit Test
Antonin Schrab
Benjamin Guedj
A. Gretton
52
17
0
02 Feb 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng-Wei Zhang
40
4
0
18 Jan 2022
Kernel Two-Sample Tests in High Dimension: Interplay Between Moment Discrepancy and Dimension-and-Sample Orders
J. Yan
Xianyang Zhang
25
16
0
31 Dec 2021
A Generic Approach for Enhancing GANs by Regularized Latent Optimization
Yufan Zhou
Chunyuan Li
Changyou Chen
Jinhui Xu
27
0
0
07 Dec 2021
Bounding Wasserstein distance with couplings
N. Biswas
Lester W. Mackey
22
8
0
06 Dec 2021
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework
Chao Zhang
Zhijian Li
Hui Qian
Xin Du
13
10
0
02 Dec 2021
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Density Ratio Estimation via Infinitesimal Classification
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
14
38
0
22 Nov 2021
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
21
1
0
21 Nov 2021
Composite Goodness-of-fit Tests with Kernels
Oscar Key
A. Gretton
F. Briol
T. Fernandez
30
14
0
19 Nov 2021
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
26
9
0
28 Oct 2021
MMD Aggregated Two-Sample Test
Antonin Schrab
Ilmun Kim
Mélisande Albert
Béatrice Laurent
Benjamin Guedj
A. Gretton
6
55
0
28 Oct 2021
Doubly Robust Stein-Kernelized Monte Carlo Estimator: Simultaneous Bias-Variance Reduction and Supercanonical Convergence
H. Lam
Haofeng Zhang
11
3
0
23 Oct 2021
On out-of-distribution detection with Bayesian neural networks
Francesco DÁngelo
Christian Henning
BDL
UQCV
21
6
0
12 Oct 2021
Denoising Diffusion Gamma Models
Eliya Nachmani
S. Robin
Lior Wolf
DiffM
VLM
18
30
0
10 Oct 2021
A moment-matching metric for latent variable generative models
Cédric Beaulac
14
1
0
04 Oct 2021
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
36
29
0
04 Oct 2021
LDC-VAE: A Latent Distribution Consistency Approach to Variational AutoEncoders
Xiaoyu Chen
Chen Gong
Qiang He
Xinwen Hou
Yu Liu
28
1
0
22 Sep 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
28
2
0
13 Sep 2021
Measuring Sample Quality in Algorithms for Intractable Normalizing Function Problems
Bokgyeong Kang
John Hughes
M. Haran
TPM
23
1
0
10 Sep 2021
Adversarial Stein Training for Graph Energy Models
Shiv Shankar
BDL
19
0
0
30 Aug 2021
Are Bayesian neural networks intrinsically good at out-of-distribution detection?
Christian Henning
Francesco DÁngelo
Benjamin Grewe
UQCV
BDL
23
10
0
26 Jul 2021
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
21
153
0
25 Jul 2021
Previous
1
2
3
4
5
6
Next