Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.05179
Cited By
Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation
16 February 2016
B. Scellier
Yoshua Bengio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation"
50 / 99 papers shown
Title
Equilibrium Propagation for Learning in Lagrangian Dynamical Systems
Serge Massar
26
0
0
12 May 2025
Harnessing uncertainty when learning through Equilibrium Propagation in neural networks
Jonathan Peters
Philippe Talatchian
42
0
0
28 Mar 2025
Training Large Neural Networks With Low-Dimensional Error Feedback
Maher Hanut
Jonathan Kadmon
45
1
0
27 Feb 2025
Benchmarking Predictive Coding Networks -- Made Simple
Luca Pinchetti
Chang Qi
Oleh Lokshyn
Gaspard Olivers
Cornelius Emde
...
Simon Frieder
Bayar I. Menzat
Rafal Bogacz
Thomas Lukasiewicz
Tommaso Salvatori
130
5
0
17 Feb 2025
Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions
Zhaoxian Wu
Quan Xian
Tayfun Gokmen
Omobayode Fagbohungbe
Tianyi Chen
91
0
0
17 Feb 2025
Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation
Satoki Ishikawa
Rio Yokota
Ryo Karakida
46
0
0
04 Nov 2024
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
191
1
0
08 Oct 2024
Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks
A. Mali
Tommaso Salvatori
Alexander Ororbia
37
0
0
07 Oct 2024
Relating Superconducting Optoelectronic Networks to Classical Neurodynamics
J. Shainline
Bryce Primavera
Ryan O'Loughlin
29
0
0
26 Sep 2024
Self-Contrastive Forward-Forward Algorithm
Xing Chen
Dongshu Liu
Jérémie Laydevant
Julie Grollier
44
2
0
17 Sep 2024
Predictive Coding Networks and Inference Learning: Tutorial and Survey
B. V. Zwol
Ro Jefferson
E. V. D. Broek
63
0
0
04 Jul 2024
Calibrating Neural Networks' parameters through Optimal Contraction in a Prediction Problem
Valdes Gonzalo
34
0
0
15 Jun 2024
Contribute to balance, wire in accordance: Emergence of backpropagation from a simple, bio-plausible neuroplasticity rule
Xinhao Fan
S. P. Mysore
37
0
0
23 May 2024
Scaling SNNs Trained Using Equilibrium Propagation to Convolutional Architectures
Jiaqi Lin
Malyaban Bal
Abhronil Sengupta
42
2
0
04 May 2024
Backpropagation through space, time, and the brain
B. Ellenberger
Paul Haider
Jakob Jordan
Kevin Max
Ismael Jaras
Laura Kriener
Federico Benitez
Mihai A. Petrovici
133
8
0
25 Mar 2024
Evolutionary algorithms as an alternative to backpropagation for supervised training of Biophysical Neural Networks and Neural ODEs
James Hazelden
Yuhan Helena Liu
Eli Shlizerman
E. Shea-Brown
47
2
0
17 Nov 2023
Randomized Forward Mode of Automatic Differentiation For Optimization Algorithms
Khemraj Shukla
Yeonjong Shin
ODL
26
4
0
22 Oct 2023
Seeking Next Layer Neurons' Attention for Error-Backpropagation-Like Training in a Multi-Agent Network Framework
Arshia Soltani Moakhar
Mohammad Azizmalayeri
Hossein Mirzaei
M. T. Manzuri
M. Rohban
31
2
0
15 Oct 2023
Neural Sampling in Hierarchical Exponential-family Energy-based Models
Xingsi Dong
Si Wu
38
2
0
12 Oct 2023
Improving equilibrium propagation without weight symmetry through Jacobian homeostasis
Axel Laborieux
Friedemann Zenke
25
7
0
05 Sep 2023
Correlative Information Maximization: A Biologically Plausible Approach to Supervised Deep Neural Networks without Weight Symmetry
Bariscan Bozkurt
Cengiz Pehlevan
A. Erdogan
35
1
0
07 Jun 2023
Biologically-Motivated Learning Model for Instructed Visual Processing
R. Abel
S. Ullman
25
0
0
04 Jun 2023
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Understanding and Improving Optimization in Predictive Coding Networks
Nick Alonso
J. Krichmar
Emre Neftci
73
7
0
23 May 2023
Backpropagation-free Training of Deep Physical Neural Networks
Ali Momeni
Babak Rahmani
M. Malléjac
Philipp del Hougne
Romain Fleury
AI4CE
PINN
32
54
0
20 Apr 2023
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Ezekiel Williams
C. Bredenberg
Guillaume Lajoie
32
6
0
24 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
R. Høier
D. Staudt
Christopher Zach
31
11
0
02 Feb 2023
The Forward-Forward Algorithm: Some Preliminary Investigations
Geoffrey E. Hinton
27
260
0
27 Dec 2022
Is Bio-Inspired Learning Better than Backprop? Benchmarking Bio Learning vs. Backprop
Manas Gupta
Sarthak Ketanbhai Modi
Hang Zhang
Joon Hei Lee
J. Lim
27
7
0
09 Dec 2022
Convolutional Neural Generative Coding: Scaling Predictive Coding to Natural Images
Alexander Ororbia
A. Mali
BDL
38
10
0
22 Nov 2022
A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive Coding Networks
Tommaso Salvatori
Yuhang Song
Yordan Yordanov
Beren Millidge
Zheng R. Xu
Lei Sha
Cornelius Emde
Rafal Bogacz
Thomas Lukasiewicz
34
10
0
16 Nov 2022
Predictive Coding beyond Gaussian Distributions
Luca Pinchetti
Tommaso Salvatori
Yordan Yordanov
Beren Millidge
Yuhang Song
Thomas Lukasiewicz
UQCV
BDL
32
11
0
07 Nov 2022
Hebbian Deep Learning Without Feedback
Adrien Journé
Hector Garcia Rodriguez
Qinghai Guo
Timoleon Moraitis
AAML
31
49
0
23 Sep 2022
Sequence Learning Using Equilibrium Propagation
Malyaban Bal
Abhronil Sengupta
35
9
0
14 Sep 2022
Biologically Plausible Training of Deep Neural Networks Using a Top-down Credit Assignment Network
Jian-Hui Chen
Cheng-Lin Liu
Zuoren Wang
26
0
0
01 Aug 2022
The Free Energy Principle drives neuromorphic development
C. Fields
Karl J. Friston
J. Glazebrook
Michael Levin
A. Marcianò
35
14
0
20 Jul 2022
Biologically-inspired neuronal adaptation improves learning in neural networks
Yoshimasa Kubo
Eric Chalmers
Artur Luczak
17
6
0
08 Apr 2022
Hybrid Predictive Coding: Inferring, Fast and Slow
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
27
36
0
05 Apr 2022
Quantum materials for energy-efficient neuromorphic computing
A. Hoffmann
S. Ramanathan
Julie Grollier
A. Kent
M. Rozenberg
...
A. Petford-Long
J. Schuller
M. D. Stiles
Y. Takamura
Yimei Zhu
11
46
0
04 Apr 2022
Signal Propagation: A Framework for Learning and Inference In a Forward Pass
Adam A. Kohan
E. Rietman
H. Siegelmann
27
26
0
04 Apr 2022
Predicting Multi-Antenna Frequency-Selective Channels via Meta-Learned Linear Filters based on Long-Short Term Channel Decomposition
Sangwoo Park
Osvaldo Simeone
34
4
0
23 Mar 2022
Constrained Parameter Inference as a Principle for Learning
Nasir Ahmad
Ellen Schrader
Marcel van Gerven
18
10
0
22 Mar 2022
An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks
Zhan Hu
Tao Wang
Xiaolin Hu
17
12
0
07 Mar 2022
Towards Scaling Difference Target Propagation by Learning Backprop Targets
M. Ernoult
Fabrice Normandin
A. Moudgil
Sean Spinney
Eugene Belilovsky
Irina Rish
Blake A. Richards
Yoshua Bengio
19
28
0
31 Jan 2022
Neural Network Training with Asymmetric Crosspoint Elements
M. Onen
Tayfun Gokmen
T. Todorov
T. Nowicki
Jesús A. del Alamo
J. Rozen
W. Haensch
Seyoung Kim
34
19
0
31 Jan 2022
Learning on Arbitrary Graph Topologies via Predictive Coding
Tommaso Salvatori
Luca Pinchetti
Beren Millidge
Yuhang Song
Tianyi Bao
Rafal Bogacz
Thomas Lukasiewicz
38
33
0
31 Jan 2022
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
Giorgia Dellaferrera
Gabriel Kreiman
29
53
0
27 Jan 2022
Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time
Bojian Yin
Federico Corradi
S. Bohté
38
61
0
20 Dec 2021
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural Networks
Huu Le
R. Høier
Che-Tsung Lin
Christopher Zach
55
17
0
06 Dec 2021
1
2
Next