Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.06053
Cited By
First-order Methods for Geodesically Convex Optimization
19 February 2016
Hongyi Zhang
S. Sra
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"First-order Methods for Geodesically Convex Optimization"
50 / 69 papers shown
Title
Decentralized Optimization on Compact Submanifolds by Quantized Riemannian Gradient Tracking
Jun Chen
Lina Liu
T. Zhu
Yong Liu
Guang Dai
Yunliang Jiang
Ivor Tsang
22
0
0
09 Jun 2025
Multiple Wasserstein Gradient Descent Algorithm for Multi-Objective Distributional Optimization
Dai Hai Nguyen
Hiroshi Mamitsuka
Atsuyoshi Nakamura
65
0
0
24 May 2025
Geodesic Optimization for Predictive Shift Adaptation on EEG data
Apolline Mellot
Antoine Collas
Sylvain Chevallier
Alexandre Gramfort
Denis A. Engemann
OOD
84
5
0
04 Jul 2024
CLOSURE: Fast Quantification of Pose Uncertainty Sets
Yihuai Gao
Yukai Tang
Han Qi
Heng Yang
90
6
0
15 Mar 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
81
5
0
06 Feb 2024
Robust Signal Recovery in Hadamard Spaces
Georg Kostenberger
Thomas Stark
47
2
0
12 Jul 2023
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
108
3
0
03 May 2023
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
82
10
0
26 Nov 2022
Lifting Weak Supervision To Structured Prediction
Harit Vishwakarma
Nicholas Roberts
Frederic Sala
NoLa
93
8
0
24 Nov 2022
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
Tyler Maunu
Thibaut Le Gouic
Philippe Rigollet
64
5
0
26 Oct 2022
Shape And Structure Preserving Differential Privacy
Carlos Soto
Karthik Bharath
M. Reimherr
Aleksandra B. Slavkovic
61
8
0
21 Sep 2022
The Proxy Step-size Technique for Regularized Optimization on the Sphere Manifold
Fang Bai
Adrien Bartoli
15
1
0
05 Sep 2022
Riemannian accelerated gradient methods via extrapolation
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
70
10
0
13 Aug 2022
A Particle-Based Algorithm for Distributional Optimization on \textit{Constrained Domains} via Variational Transport and Mirror Descent
Dai Hai Nguyen
Tetsuya Sakurai
102
2
0
01 Aug 2022
Riemannian stochastic approximation algorithms
Mohammad Reza Karimi
Ya-Ping Hsieh
P. Mertikopoulos
Andreas Krause
50
2
0
14 Jun 2022
Federated Learning on Riemannian Manifolds
Jiaxiang Li
Shiqian Ma
FedML
79
13
0
12 Jun 2022
Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal Attention, and Optimal Transport
Lingkai Kong
Yuqing Wang
Molei Tao
ODL
67
9
0
27 May 2022
Stochastic and Private Nonconvex Outlier-Robust PCA
Tyler Maunu
Chenyun Yu
Gilad Lerman
122
3
0
17 Mar 2022
Online Learning to Transport via the Minimal Selection Principle
Wenxuan Guo
Y. Hur
Tengyuan Liang
Christopher Ryan
53
3
0
09 Feb 2022
Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector Problems
C. J. Li
Michael I. Jordan
73
2
0
29 Dec 2021
Understanding Riemannian Acceleration via a Proximal Extragradient Framework
Jikai Jin
S. Sra
31
6
0
04 Nov 2021
Distributed Principal Component Analysis with Limited Communication
Foivos Alimisis
Peter Davies
Bart Vandereycken
Dan Alistarh
80
12
0
27 Oct 2021
Mode and Ridge Estimation in Euclidean and Directional Product Spaces: A Mean Shift Approach
Yikun Zhang
Yen-Chi Chen
151
1
0
16 Oct 2021
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
139
28
0
07 Oct 2021
From the Greene--Wu Convolution to Gradient Estimation over Riemannian Manifolds
Tianyu Wang
Yifeng Huang
Didong Li
40
8
0
17 Aug 2021
Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent
Jason M. Altschuler
Sinho Chewi
P. Gerber
Austin J. Stromme
87
37
0
16 Jun 2021
On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
105
39
0
01 Jun 2021
Universal Regular Conditional Distributions
Anastasis Kratsios
97
3
0
17 May 2021
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
56
12
0
15 Feb 2021
Fast and accurate optimization on the orthogonal manifold without retraction
Pierre Ablin
Gabriel Peyré
115
30
0
15 Feb 2021
Decentralized Riemannian Gradient Descent on the Stiefel Manifold
Shixiang Chen
Alfredo García
Mingyi Hong
Shahin Shahrampour
86
45
0
14 Feb 2021
On the Local Linear Rate of Consensus on the Stiefel Manifold
Shixiang Chen
Alfredo García
Mingyi Hong
Shahin Shahrampour
61
14
0
22 Jan 2021
No-go Theorem for Acceleration in the Hyperbolic Plane
Linus Hamilton
Ankur Moitra
60
21
0
14 Jan 2021
Accelerating Training of Batch Normalization: A Manifold Perspective
Mingyang Yi
47
3
0
08 Jan 2021
Stochastic Approximation for Online Tensorial Independent Component Analysis
C. J. Li
Michael I. Jordan
72
2
0
28 Dec 2020
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
David Martínez-Rubio
123
20
0
07 Dec 2020
Accelerated Algorithms for Convex and Non-Convex Optimization on Manifolds
Lizhen Lin
B. Saparbayeva
M. Zhang
David B. Dunson
49
7
0
18 Oct 2020
Convergence Analysis of Riemannian Stochastic Approximation Schemes
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
Hoi-To Wai
65
10
0
27 May 2020
Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold
Bokun Wang
Shiqian Ma
Lingzhou Xue
83
19
0
03 May 2020
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
83
5
0
30 Apr 2020
Learning Polynomials of Few Relevant Dimensions
Sitan Chen
Raghu Meka
70
40
0
28 Apr 2020
From Nesterov's Estimate Sequence to Riemannian Acceleration
Kwangjun Ahn
S. Sra
97
78
0
24 Jan 2020
Gradient descent algorithms for Bures-Wasserstein barycenters
Sinho Chewi
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
63
87
0
06 Jan 2020
Weakly Convex Optimization over Stiefel Manifold Using Riemannian Subgradient-Type Methods
Xiao Li
Shixiang Chen
Zengde Deng
Qing Qu
Zhihui Zhu
Anthony Man-Cho So
78
15
0
12 Nov 2019
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
125
128
0
20 Sep 2019
Escaping from saddle points on Riemannian manifolds
Yue Sun
Nicolas Flammarion
Maryam Fazel
64
73
0
18 Jun 2019
Rarely-switching linear bandits: optimization of causal effects for the real world
B. Lansdell
Sofia Triantafillou
Konrad Paul Kording
55
4
0
30 May 2019
Wasserstein Style Transfer
Youssef Mroueh
OT
58
48
0
30 May 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
67
6
0
11 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
84
3
0
04 Feb 2019
1
2
Next