ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06701
  4. Cited By
Inference Networks for Sequential Monte Carlo in Graphical Models
v1v2 (latest)

Inference Networks for Sequential Monte Carlo in Graphical Models

22 February 2016
Brooks Paige
Frank Wood
    BDL
ArXiv (abs)PDFHTML

Papers citing "Inference Networks for Sequential Monte Carlo in Graphical Models"

48 / 48 papers shown
Title
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
114
2
0
10 Feb 2025
Foundation Inference Models for Markov Jump Processes
Foundation Inference Models for Markov Jump Processes
David Berghaus
K. Cvejoski
Patrick Seifner
C. Ojeda
Ramses J. Sanchez
101
1
0
10 Jun 2024
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
63
2
0
01 Nov 2023
Truncated proposals for scalable and hassle-free simulation-based
  inference
Truncated proposals for scalable and hassle-free simulation-based inference
Michael Deistler
P. J. Gonçalves
Jakob H Macke
153
51
0
10 Oct 2022
Estimators of Entropy and Information via Inference in Probabilistic
  Models
Estimators of Entropy and Information via Inference in Probabilistic Models
Feras A. Saad
Marco F. Cusumano-Towner
Vikash K. Mansinghka
56
4
0
24 Feb 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
83
11
0
29 Oct 2021
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Accelerating Metropolis-Hastings with Lightweight Inference Compilation
Feynman T. Liang
Nimar S. Arora
N. Tehrani
Y. Li
Michael Tingley
E. Meijer
50
0
0
23 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
189
55
0
23 Mar 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
91
93
0
12 Feb 2020
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
266
857
0
04 Nov 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
100
47
0
29 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic
  Programming
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
60
17
0
17 Oct 2019
Universal Marginaliser for Deep Amortised Inference for Probabilistic
  Programs
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
R. Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
A. Buchard
Maria Lomeli
Yura N. Perov
Saurabh Johri
UQCV
51
0
0
16 Oct 2019
Mining for Dark Matter Substructure: Inferring subhalo population
  properties from strong lenses with machine learning
Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning
Johann Brehmer
S. Mishra-Sharma
Joeri Hermans
Gilles Louppe
Kyle Cranmer
112
74
0
04 Sep 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
81
115
0
24 Jul 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
81
14
0
04 Jun 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
120
128
0
15 May 2019
Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
Reinforced Genetic Algorithm Learning for Optimizing Computation Graphs
Aditya Sanjay Paliwal
Felix Gimeno
Vinod Nair
Yujia Li
Miles Lubin
Pushmeet Kohli
Oriol Vinyals
OffRLGNN
99
67
0
07 May 2019
Elements of Sequential Monte Carlo
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
97
0
12 Mar 2019
Amortized Bayesian inference for clustering models
Amortized Bayesian inference for clustering models
Ari Pakman
Liam Paninski
21
6
0
24 Nov 2018
Universal Marginalizer for Amortised Inference and Embedding of
  Generative Models
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
R. Walecki
A. Buchard
Kostis Gourgoulias
Chris Hart
Maria Lomeli
Alexandre Khae Wu Navarro
Max Zwiessele
Yura N. Perov
Saurabh Johri
BDL
70
2
0
12 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Likelihood-free inference with an improved cross-entropy estimator
Likelihood-free inference with an improved cross-entropy estimator
M. Stoye
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
FedMLUQCVBDL
163
48
0
02 Aug 2018
Constructing Deep Neural Networks by Bayesian Network Structure Learning
Constructing Deep Neural Networks by Bayesian Network Structure Learning
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
G. Koren
Gal Novik
BDL
130
26
0
24 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CETPM
188
181
0
30 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank Wood
BDL
60
23
0
26 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
552
370
0
18 May 2018
Learning Approximate Inference Networks for Structured Prediction
Learning Approximate Inference Networks for Structured Prediction
Lifu Tu
Kevin Gimpel
BDL
54
53
0
09 Mar 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
210
198
0
13 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
134
47
0
01 Dec 2017
ZhuSuan: A Library for Bayesian Deep Learning
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCVBDL
82
43
0
18 Sep 2017
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals
Tongzhou Wang
Yi Wu
David A. Moore
Stuart J. Russell
BDL
80
2
0
21 Aug 2017
Learning to Infer Graphics Programs from Hand-Drawn Images
Learning to Infer Graphics Programs from Hand-Drawn Images
Kevin Ellis
Daniel E. Ritchie
Armando Solar-Lezama
J. Tenenbaum
NAI
104
231
0
30 Jul 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GANBDL
83
82
0
20 Jul 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
301
215
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDLDRL
345
153
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
260
210
0
25 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
234
1,361
0
19 May 2017
Translating Neuralese
Translating Neuralese
Jacob Andreas
Anca Dragan
Dan Klein
142
58
0
23 Apr 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank Wood
SyDaOOD
160
89
0
02 Mar 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Learning to superoptimize programs - Workshop Version
Learning to superoptimize programs - Workshop Version
Rudy Bunel
Alban Desmaison
M. P. Kumar
Philip Torr
Pushmeet Kohli
143
10
0
04 Dec 2016
Two Methods For Wild Variational Inference
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
138
19
0
30 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GANBDL
151
119
0
06 Nov 2016
Inference Compilation and Universal Probabilistic Programming
Inference Compilation and Universal Probabilistic Programming
T. Le
A. G. Baydin
Frank Wood
UQCV
219
143
0
31 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
111
82
0
18 Oct 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
189
158
0
20 May 2016
1