Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.00825
Cited By
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
4 April 2016
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers"
34 / 84 papers shown
Title
IA-RED
2
^2
2
: Interpretability-Aware Redundancy Reduction for Vision Transformers
Bowen Pan
Yikang Shen
Yi Ding
Zhangyang Wang
Rogerio Feris
A. Oliva
VLM
ViT
39
153
0
23 Jun 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
Causal Abstractions of Neural Networks
Atticus Geiger
Hanson Lu
Thomas Icard
Christopher Potts
NAI
CML
17
222
0
06 Jun 2021
Explainable Machine Learning with Prior Knowledge: An Overview
Katharina Beckh
Sebastian Müller
Matthias Jakobs
Vanessa Toborek
Hanxiao Tan
Raphael Fischer
Pascal Welke
Sebastian Houben
Laura von Rueden
XAI
22
28
0
21 May 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
23
38
0
18 May 2021
Bias, Fairness, and Accountability with AI and ML Algorithms
Neng-Zhi Zhou
Zach Zhang
V. Nair
Harsh Singhal
Jie Chen
Agus Sudjianto
FaML
21
9
0
13 May 2021
Knowledge Neurons in Pretrained Transformers
Damai Dai
Li Dong
Y. Hao
Zhifang Sui
Baobao Chang
Furu Wei
KELM
MU
28
418
0
18 Apr 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAI
AI4TS
44
128
0
02 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Transformer Interpretability Beyond Attention Visualization
Hila Chefer
Shir Gur
Lior Wolf
45
644
0
17 Dec 2020
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
25
88
0
27 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
FAtt
38
17
0
14 Oct 2020
SHAP values for Explaining CNN-based Text Classification Models
Wei Zhao
Tarun Joshi
V. Nair
Agus Sudjianto
FAtt
28
36
0
26 Aug 2020
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
31
15
0
17 Jul 2020
The Penalty Imposed by Ablated Data Augmentation
Frederick Liu
A. Najmi
Mukund Sundararajan
31
6
0
08 Jun 2020
Attribution in Scale and Space
Shawn Xu
Subhashini Venugopalan
Mukund Sundararajan
FAtt
BDL
14
71
0
03 Apr 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
Q-value Path Decomposition for Deep Multiagent Reinforcement Learning
Yaodong Yang
Jianye Hao
Guangyong Chen
Hongyao Tang
Yingfeng Chen
Yujing Hu
Changjie Fan
Zhongyu Wei
23
52
0
10 Feb 2020
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
15
278
0
29 Oct 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
19
3
0
27 Sep 2019
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
21
80
0
25 Jun 2019
Software and application patterns for explanation methods
Maximilian Alber
38
11
0
09 Apr 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
DeepPINK: reproducible feature selection in deep neural networks
Yang Young Lu
Yingying Fan
Jinchi Lv
William Stafford Noble
FAtt
27
124
0
04 Sep 2018
Shedding Light on Black Box Machine Learning Algorithms: Development of an Axiomatic Framework to Assess the Quality of Methods that Explain Individual Predictions
Milo Honegger
19
35
0
15 Aug 2018
A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values
Mukund Sundararajan
Ankur Taly
FAtt
19
21
0
11 Jun 2018
How Important Is a Neuron?
Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
FAtt
GNN
22
128
0
30 May 2018
Did the Model Understand the Question?
Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
ELM
OOD
FAtt
27
196
0
14 May 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
42
5,865
0
04 Mar 2017
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
53
897
0
05 Oct 2016
Identifying individual facial expressions by deconstructing a neural network
F. Arbabzadah
G. Montavon
K. Müller
Wojciech Samek
CVBM
FAtt
30
31
0
23 Jun 2016
Previous
1
2