ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.02019
  4. Cited By
Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec

Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec

6 May 2016
Christopher E. Moody
ArXiv (abs)PDFHTML

Papers citing "Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec"

14 / 14 papers shown
Title
A Novel Method for News Article Event-Based Embedding
A Novel Method for News Article Event-Based Embedding
Koren Ishlach
Itzhak Ben-David
Michael Fire
Lior Rokach
72
0
0
20 May 2024
A Process for Topic Modelling Via Word Embeddings
A Process for Topic Modelling Via Word Embeddings
Diego Saldana Ulloa
33
0
0
06 Oct 2023
Causal effect of racial bias in data and machine learning algorithms on user persuasiveness & discriminatory decision making: An Empirical Study
Kinshuk Sengupta
Praveen Ranjan Srivastava
74
6
0
22 Jan 2022
Survey of Generative Methods for Social Media Analysis
Survey of Generative Methods for Social Media Analysis
Stan Matwin
Aristides Milios
P. Prałat
Amilcar Soares
Franccois Théberge
66
4
0
13 Dec 2021
Structural Text Segmentation of Legal Documents
Structural Text Segmentation of Legal Documents
Dennis Aumiller
Satya Almasian
S. Lackner
Michael Gertz
AILaw
73
30
0
07 Dec 2020
Can questions summarize a corpus? Using question generation for
  characterizing COVID-19 research
Can questions summarize a corpus? Using question generation for characterizing COVID-19 research
Gabriela Surita
Rodrigo Nogueira
R. Lotufo
39
7
0
19 Sep 2020
P-SIF: Document Embeddings Using Partition Averaging
P-SIF: Document Embeddings Using Partition Averaging
Vivek Gupta
A. Saw
Pegah Nokhiz
Praneeth Netrapalli
Piyush Rai
Partha P. Talukdar
46
25
0
18 May 2020
Discovering topics with neural topic models built from PLSA assumptions
Discovering topics with neural topic models built from PLSA assumptions
Silèye O. Ba
BDL
26
2
0
25 Nov 2019
Neural Embedding Allocation: Distributed Representations of Topic Models
Neural Embedding Allocation: Distributed Representations of Topic Models
Kamrun Naher Keya
Yannis Papanikolaou
James R. Foulds
BDL
67
5
0
10 Sep 2019
Semantic Concept Spaces: Guided Topic Model Refinement using
  Word-Embedding Projections
Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections
Mennatallah El-Assady
Rebecca Kehlbeck
C. Collins
Daniel A. Keim
Oliver Deussen
56
43
0
01 Aug 2019
Topic Modeling in Embedding Spaces
Topic Modeling in Embedding Spaces
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
BDL
215
648
0
08 Jul 2019
Mixing syntagmatic and paradigmatic information for concept detection
Mixing syntagmatic and paradigmatic information for concept detection
L. Chartrand
Mohamed Bouguessa
44
2
0
09 Apr 2019
Deep Neural Networks for Query Expansion using Word Embeddings
Deep Neural Networks for Query Expansion using Word Embeddings
Feryal M. P. Behbahani
Amir Vakili
Ali Montazer
A. Shakery
43
40
0
08 Nov 2018
Imparting Interpretability to Word Embeddings while Preserving Semantic
  Structure
Imparting Interpretability to Word Embeddings while Preserving Semantic Structure
Lutfi Kerem Senel
Ihsan Utlu
Furkan Şahinuç
H. Ozaktas
Aykut Kocc
89
14
0
19 Jul 2018
1